Universal constructions for Poisson algebras. Applications

被引:0
作者
Agore, A. L. [1 ,2 ,3 ]
Militaru, G. [3 ,4 ]
机构
[1] Vrije Univ Brussel, Pl Laan 2, B-1050 Brussels, Belgium
[2] Max Planck Inst Math, Vivatsgasse 7, D-53111 Bonn, Germany
[3] Romanian Acad, Sim Stoilow Inst Math, POB 1-764, Bucharest 014700, Romania
[4] Univ Bucharest, Fac Math & Comp Sci, Str Acad 14, RO-010014 Bucharest 1, Romania
关键词
Poisson algebras; Universal constructions; Automorphisms group; Gradings;
D O I
10.1016/j.jalgebra.2023.09.031
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the universal algebra of two Poisson algebras P and Q as a commutative algebra A := P(P, Q) satisfying a certain universal property. The universal algebra is shown to exist for any finite dimensional Poisson algebra P and several of its applications are highlighted. For any Poisson P-module U, we construct a functor U 0 -: AM -> QPM from the category of A-modules to the category of Poisson Q-modules which has a left adjoint whenever U is finite dimensional. Similarly, if V is an A-module, then there exists another functor - 0 V : PPM -> QPM connecting the categories of Poisson representations of P and Q and the latter functor also admits a left adjoint if V is finite dimensional. If P is n-dimensional, then P(P) := P(P, P) is the initial object in the category of all commutative bialgebras coacting on P. As an algebra, P(P) can be described as the quotient of the polynomial algebra k[Xij |i, j = 1, center dot center dot center dot , n] through an ideal generated by 2n3 non-homogeneous polynomials of degree <= 2. Two applications are provided. The first one describes the automorphisms group AutPoiss(P) as the group of all invertible group-like elements of the finite dual P(P)o. Secondly, we show that for an abelian group G, all G-gradings on P can be explicitly described and classified in terms of the universal coacting bialgebra P(P). (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:32 / 56
页数:25
相关论文
共 30 条
  • [1] Agore AL, 2024, Arxiv, DOI arXiv:2301.03051
  • [2] V-universal Hopf algebras (co)acting on ω-algebras
    Agore, A. L.
    Gordienko, A. S.
    Vercruysse, J.
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2023, 25 (01)
  • [3] A new invariant for finite dimensional Leibniz/Lie algebras
    Agore, A. L.
    Militaru, G.
    [J]. JOURNAL OF ALGEBRA, 2020, 562 : 390 - 409
  • [4] Universal coacting Poisson Hopf algebras
    Agore, A. L.
    [J]. MANUSCRIPTA MATHEMATICA, 2021, 165 (1-2) : 255 - 268
  • [5] Equivalences of (co)module algebra structures over Hopf algebras
    Agore, Ana
    Gordienko, Alexey
    Vercruysse, Joost
    [J]. JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2021, 15 (03) : 951 - 993
  • [6] Jacobi and Poisson algebras
    Agore, Ana L.
    Militaru, Gigel
    [J]. JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2015, 9 (04) : 1295 - 1342
  • [7] [Anonymous], 1969, Hopf Algebras
  • [8] COENDOMORPHISM LEFT BIALGEBROIDS
    Ardizzoni, A.
    El Kaoutit, L.
    Menini, C.
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2013, 12 (03)
  • [9] CATEGORIES OF COMODULES AND CHAIN COMPLEXES OF MODULES
    Ardizzoni, A.
    El Kaoutit, L.
    Menini, C.
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2012, 23 (10)
  • [10] Ballesteros A., 2004, CRM Proc. Lecture Notes, V37