Obstacle Detection Method Based on RSU and Vehicle Camera Fusion

被引:3
作者
Ding, Shaohong [1 ]
Xu, Yi [1 ,2 ]
Zhang, Qian [3 ]
Yu, Jinxin [1 ]
Sun, Teng [1 ]
Ni, Juan [1 ]
Shi, Shuyue [1 ]
Kong, Xiangcun [1 ]
Zhu, Ruoyu [1 ]
Wang, Liming [1 ]
Wang, Pengwei [1 ,2 ]
机构
[1] Shandong Univ Technol, Sch Transportat & Vehicle Engn, Zibo 255000, Peoples R China
[2] Shandong Univ Technol, Collaborat Innovat Ctr New Energy Automot, Zibo 255000, Peoples R China
[3] Jinan Engn Polytech, Jinan 250200, Peoples R China
基金
中国国家自然科学基金;
关键词
obstacle detection; road-side unit; inertial measuring unit; maximally stable extremal regions; User Data Protocol; CLASSIFICATION; HYBRID;
D O I
10.3390/s23104920
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Road obstacle detection is an important component of intelligent assisted driving technology. Existing obstacle detection methods ignore the important direction of generalized obstacle detection. This paper proposes an obstacle detection method based on the fusion of roadside units and vehicle mounted cameras and illustrates the feasibility of a combined monocular camera inertial measurement unit (IMU) and roadside unit (RSU) detection method. A generalized obstacle detection method based on vision IMU is combined with a roadside unit obstacle detection method based on a background difference method to achieve generalized obstacle classification while reducing the spatial complexity of the detection area. In the generalized obstacle recognition stage, a VIDAR (Vision-IMU based identification and ranging) -based generalized obstacle recognition method is proposed. The problem of the low accuracy of obstacle information acquisition in the driving environment where generalized obstacles exist is solved. For generalized obstacles that cannot be detected by the roadside unit, VIDAR obstacle detection is performed on the target generalized obstacles through the vehicle terminal camera, and the detection result information is transmitted to the roadside device terminal through the UDP (User Data Protocol) protocol to achieve obstacle recognition and pseudo-obstacle removal, thereby reducing the error recognition rate of generalized obstacles. In this paper, pseudo-obstacles, obstacles with a certain height less than the maximum passing height of the vehicle, and obstacles with a height greater than the maximum passing height of the vehicle are defined as generalized obstacles. Pseudo-obstacles refer to non-height objects that appear to be "patches" on the imaging interface obtained by visual sensors and obstacles with a height less than the maximum passing height of the vehicle. VIDAR is a vision-IMU-based detection and ranging method. IMU is used to obtain the distance and pose of the camera movement, and through the inverse perspective transformation, it can calculate the height of the object in the image. The VIDAR-based obstacle detection method, the roadside unit-based obstacle detection method, YOLOv5 (You Only Look Once version 5), and the method proposed in this paper were applied to outdoor comparison experiments. The results show that the accuracy of the method is improved by 2.3%, 17.4%, and 1.8%, respectively, compared with the other four methods. Compared with the roadside unit obstacle detection method, the speed of obstacle detection is improved by 1.1%. The experimental results show that the method can expand the detection range of road vehicles based on the vehicle obstacle detection method and can quickly and effectively eliminate false obstacle information on the road.
引用
收藏
页数:25
相关论文
共 34 条
[1]   Hybrid feature selection and SVM-based classification for mouse skin precancerous stages diagnosis from bimodal spectroscopy [J].
Abdat, F. ;
Amouroux, M. ;
Guermeur, Y. ;
Blondel, W. .
OPTICS EXPRESS, 2012, 20 (01) :228-244
[2]   ReMAC: a novel hybrid and reservation-based MAC protocol for VANETs [J].
Aggun, Fikri ;
Cibuk, Musa ;
Ur-Rehman, Shafqat .
TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2020, 28 (04) :1886-1904
[3]   Obstacle avoidance using stereo vision and depth maps for visual aid devices [J].
Bansal, Vaibhav ;
Balasubramanian, Krithika ;
Natarajan, P. .
SN APPLIED SCIENCES, 2020, 2 (06)
[4]  
Bertozzi M, 2005, 2005 IEEE INTELLIGENT VEHICLES SYMPOSIUM PROCEEDINGS, P569
[5]  
Cui M., 2020, ACCOUNTING AUDIT FIN, V2020, P5
[6]   Design and implementation of a radar and camera-based obstacle classification system using machine-learning techniques [J].
Dhouioui, Mohamed ;
Frikha, Tarek .
JOURNAL OF REAL-TIME IMAGE PROCESSING, 2021, 18 (06) :2403-2415
[7]   A New Motion Obstacle Detection based Monocular-Vision Algorithm [J].
Feng Yuxi ;
He Guotian ;
Wu Qizhou .
2016 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND APPLICATIONS (ICCIA), 2016, :31-35
[8]   Real-time obstacle detection by stereo vision and ultrasonic data fusion [J].
Gholami, Farshad ;
Khanmirza, Esmaeel ;
Riahi, Mohammad .
MEASUREMENT, 2022, 190
[9]   SBTMS: Scalable Blockchain Trust Management System for VANET [J].
Ghovanlooy Ghajar, Fatemeh ;
Salimi Sratakhti, Javad ;
Sikora, Axel .
APPLIED SCIENCES-BASEL, 2021, 11 (24)
[10]   Rail Transit Obstacle Detection Based on Improved CNN [J].
He, Deqiang ;
Zou, Zhiheng ;
Chen, Yanjun ;
Liu, Bin ;
Miao, Jian .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70