Flux globalization based well-balanced central-upwind scheme for one-dimensional blood flow models

被引:2
作者
Chu, Shaoshuai [1 ]
Kurganov, Alexander [2 ,3 ]
机构
[1] Southern Univ Sci & Technol, Dept Math, Shenzhen 518055, Peoples R China
[2] Southern Univ Sci & Technol, Dept Math, SUSTech Int Ctr Math, Shenzhen 518055, Peoples R China
[3] Southern Univ Sci & Technol, Guangdong Prov Key Lab Computat Sci & Mat Design, Shenzhen 518055, Peoples R China
关键词
Flux globalization; Central-upwind scheme; Well-balanced method; Blood flow equations; Steady-state solutions;
D O I
10.1007/s10092-022-00497-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a new second-order well-balanced central-upwind scheme for one-dimensional blood flow models. The proposed scheme is based on a flux globalization approach, which helps to develop a high-resolution and robust method capable of preserving both "man-at-eternal-rest" (zero-velocity) and "living-man" (non-zero velocity) steady-state solutions. We demonstrate the performance of the designed schemes on several numerical examples.
引用
收藏
页数:35
相关论文
共 24 条
[1]   Finite Volume Evolution Galerkin Methods for the Shallow Water Equations with Dry Beds [J].
Bollermann, Andreas ;
Noelle, Sebastian ;
Lukacova-Medvid'ova, Maria .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2011, 10 (02) :371-404
[2]   Well-balanced discontinuous Galerkin methods for the one-dimensional blood flow through arteries model with man-at-eternal-rest and living-man equilibria [J].
Britton, Jolene ;
Xing, Yulong .
COMPUTERS & FLUIDS, 2020, 203
[3]   A New Approach for Designing Moving-Water Equilibria Preserving Schemes for the Shallow Water Equations [J].
Cheng, Yuanzhen ;
Chertock, Alina ;
Herty, Michael ;
Kurganov, Alexander ;
Wu, Tong .
JOURNAL OF SCIENTIFIC COMPUTING, 2019, 80 (01) :538-554
[4]  
Chertock A., 2018, Theory, Numerics and Applications of Hyperbolic Problems I, V236, P345
[5]   Well-Balancing via Flux Globalization: Applications to Shallow Water Equations with Wet/Dry Fronts [J].
Chertock, Alina ;
Kurganov, Alexander ;
Liu, Xin ;
Liu, Yongle ;
Wu, Tong .
JOURNAL OF SCIENTIFIC COMPUTING, 2022, 90 (01)
[6]   Well-balanced schemes for the Euler equations with gravitation: Conservative formulation using global fluxes [J].
Chertock, Alina ;
Cui, Shumo ;
Kurganov, Alexander ;
Ozcan, Seyma Nur ;
Tadmor, Eitan .
JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 358 :36-52
[7]   Second-order well-balanced Lagrange-projection schemes for blood flow equations [J].
Del Grosso, A. ;
Chalons, C. .
CALCOLO, 2021, 58 (04)
[8]   A 'well-balanced' finite volume scheme for blood flow simulation [J].
Delestre, O. ;
Lagree, P. -Y. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2013, 72 (02) :177-205
[9]   One-dimensional models for blood flow in arteries [J].
Formaggia, L ;
Lamponi, D ;
Quarteroni, A .
JOURNAL OF ENGINEERING MATHEMATICS, 2003, 47 (3-4) :251-276
[10]   A fully well-balanced scheme for the 1D blood flow equations with friction source term [J].
Ghitti, Beatrice ;
Berthon, Christophe ;
Le, Minh Hoang ;
Toro, Eleuterio F. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 421