Combined molecular subtyping, grading, and segmentation of glioma using multi-task deep learning

被引:67
作者
van der Voort, Sebastian R. [1 ]
Incekara, Fatih [2 ,3 ]
Wijnenga, Maarten M. J. [4 ]
Kapsas, Georgios [2 ]
Gahrmann, Renske [2 ]
Schouten, Joost W. [3 ]
Tewarie, Rishi Nandoe [5 ]
Lycklama, Geert J. [6 ]
Hamer, Philip C. De Witt [9 ]
Eijgelaar, Roelant S. [9 ]
French, Pim J. [4 ]
Dubbink, Hendrikus J. [7 ]
Vincent, Arnaud J. P. E. [3 ]
Niessen, Wiro J. [1 ,8 ]
van den Bent, Martin J. [4 ]
Smits, Marion [2 ]
Klein, Stefan [1 ]
机构
[1] Erasmus MC Univ Med Ctr Rotterdam, Dept Radiol & Nucl Med, Biomed Imaging Grp Rotterdam, Dr Molewaterpl 50-60, NL-3015 GE Rotterdam, Netherlands
[2] Erasmus MC Univ Med Ctr Rotterdam, Dept Radiol & Nucl Med, Rotterdam, Netherlands
[3] Erasmus MC Univ Med Ctr Rotterdam, Brain Tumor Ctr, Dept Neurosurg, Rotterdam, Netherlands
[4] Erasmus MC, Brain Tumor Ctr, Dept Neurol, Canc Inst, Rotterdam, Netherlands
[5] Haaglanden Med Ctr, Dept Neurosurg, The Hague, Netherlands
[6] Haaglanden Med Ctr, Dept Radiol, The Hague, Netherlands
[7] Brain Tumor Ctr Erasmus MC Canc Inst, Dept Pathol, Rotterdam, Netherlands
[8] Delft Univ Technol, Fac Appl Sci, Imaging Phys, Delft, Netherlands
[9] Amsterdam UMC, Brain Tumor Ctr, Dept Neurosurg, Canc Ctr Amsterdam, Amsterdam, Netherlands
关键词
deep learning; glioma; multi-task; radiomics; segmentation; CENTRAL-NERVOUS-SYSTEM; RADIOMICS; CLASSIFICATION; CHALLENGES; TUMORS;
D O I
10.1093/neuonc/noac166
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background Accurate characterization of glioma is crucial for clinical decision making. A delineation of the tumor is also desirable in the initial decision stages but is time-consuming. Previously, deep learning methods have been developed that can either non-invasively predict the genetic or histological features of glioma, or that can automatically delineate the tumor, but not both tasks at the same time. Here, we present our method that can predict the molecular subtype and grade, while simultaneously providing a delineation of the tumor. Methods We developed a single multi-task convolutional neural network that uses the full 3D, structural, preoperative MRI scans to predict the IDH mutation status, the 1p/19q co-deletion status, and the grade of a tumor, while simultaneously segmenting the tumor. We trained our method using a patient cohort containing 1508 glioma patients from 16 institutes. We tested our method on an independent dataset of 240 patients from 13 different institutes. Results In the independent test set, we achieved an IDH-AUC of 0.90, an 1p/19q co-deletion AUC of 0.85, and a grade AUC of 0.81 (grade II/III/IV). For the tumor delineation, we achieved a mean whole tumor Dice score of 0.84. Conclusions We developed a method that non-invasively predicts multiple, clinically relevant features of glioma. Evaluation in an independent dataset shows that the method achieves a high performance and that it generalizes well to the broader clinical population. This first-of-its-kind method opens the door to more generalizable, instead of hyper-specialized, AI methods.
引用
收藏
页码:279 / 289
页数:11
相关论文
共 31 条
  • [1] Bakas S., 2019, ARXIV, DOI [DOI 10.48550/ARXIV.1811.02629, 10.48550/ARXIV.1811.02629]
  • [2] Data Descriptor: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features
    Bakas, Spyridon
    Akbari, Hamed
    Sotiras, Aristeidis
    Bilello, Michel
    Rozycki, Martin
    Kirby, Justin S.
    Freymann, John B.
    Farahani, Keyvan
    Davatzikos, Christos
    [J]. SCIENTIFIC DATA, 2017, 4
  • [3] Bossuyt PM, 2015, BMJ-BRIT MED J, V351, DOI [10.1373/clinchem.2015.246280, 10.1136/bmj.h5527, 10.1148/radiol.2015151516]
  • [4] Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma
    Ceccarelli, Michele
    Barthel, Floris P.
    Malta, Tathiane M.
    Sabedot, Thais S.
    Salama, Sofie R.
    Murray, Bradley A.
    Morozova, Olena
    Newton, Yulia
    Radenbaugh, Amie
    Pagnotta, Stefano M.
    Anjum, Samreen
    Wang, Jiguang
    Manyam, Ganiraju
    Zoppoli, Pietro
    Ling, Shiyun
    Rao, Arjun A.
    Grifford, Mia
    Cherniack, Andrew D.
    Zhang, Hailei
    Poisson, Laila
    Carlotti, Carlos Gilberto, Jr.
    Tirapelli, Daniela Pretti da Cunha
    Rao, Arvind
    Mikkelsen, Tom
    Lau, Ching C.
    Yung, W. K. Alfred
    Rabadan, Raul
    Huse, Jason
    Brat, Daniel J.
    Lehman, Norman L.
    Barnholtz-Sloan, Jill S.
    Zheng, Siyuan
    Hess, Kenneth
    Rao, Ganesh
    Meyerson, Matthew
    Beroukhim, Rameen
    Cooper, Lee
    Akbani, Rehan
    Wrensch, Margaret
    Haussler, David
    Aldape, Kenneth D.
    Laird, Peter W.
    Gutmann, David H.
    Noushmehr, Houtan
    Iavarone, Antonio
    Verhaak, Roel G. W.
    [J]. CELL, 2016, 164 (03) : 550 - 563
  • [5] Radiomics-Based Machine Learning in Differentiation Between Glioblastoma and Metastatic Brain Tumors
    Chen, Chaoyue
    Ou, Xuejin
    Wang, Jian
    Guo, Wen
    Ma, Xuelei
    [J]. FRONTIERS IN ONCOLOGY, 2019, 9
  • [6] Stereotactic brain biopsy: Single center retrospective analysis of complications
    Chen, Ching-Chang
    Hsu, Peng-Wei
    Wu, Tai-Wei Erich
    Lee, Shih-Tseng
    Chang, Chen-Nen
    Wei, Kuo-chen
    Chuang, Chih-Cheng
    Wu, Chieh-Tsai
    Lui, Tai-Ngar
    Hsu, Yung-Hsin
    Lin, Tzu-Kang
    Lee, Sai-Cheung
    Huang, Yin-Cheng
    [J]. CLINICAL NEUROLOGY AND NEUROSURGERY, 2009, 111 (10) : 835 - 839
  • [7] The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository
    Clark, Kenneth
    Vendt, Bruce
    Smith, Kirk
    Freymann, John
    Kirby, Justin
    Koppel, Paul
    Moore, Stephen
    Phillips, Stanley
    Maffitt, David
    Pringle, Michael
    Tarbox, Lawrence
    Prior, Fred
    [J]. JOURNAL OF DIGITAL IMAGING, 2013, 26 (06) : 1045 - 1057
  • [8] Automated MRI based pipeline for segmentation and prediction of grade, IDH mutation and 1p19q co-deletion in glioma
    Decuyper, Milan
    Bonte, Stijn
    Deblaere, Karel
    Van Holen, Roel
    [J]. COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2021, 88
  • [9] Molecular classification of anaplastic oligodendroglioma using next-generation sequencing: a report of the prospective randomized EORTC Brain Tumor Group 26951 phase III trial
    Dubbink, Hendrikus J.
    Atmodimedjo, Peggy N.
    Kros, Johan M.
    French, Pim J.
    Sanson, Marc
    Idbaih, Ahmed
    Wesseling, Pieter
    Enting, Roelien
    Spliet, Wim
    Tijssen, Cees
    Dinjens, Winand N. M.
    Gorlia, Thierry
    van den Bent, Martin J.
    [J]. NEURO-ONCOLOGY, 2016, 18 (03) : 388 - 400
  • [10] Radiomics: Images Are More than Pictures, They Are Data
    Gillies, Robert J.
    Kinahan, Paul E.
    Hricak, Hedvig
    [J]. RADIOLOGY, 2016, 278 (02) : 563 - 577