Refining epigenetic prediction of chronological and biological age

被引:60
作者
Bernabeu, Elena [1 ]
McCartney, Daniel L. [1 ]
Gadd, Danni A. [1 ]
Hillary, Robert F. [1 ]
Lu, Ake T. T. [2 ,3 ]
Murphy, Lee [4 ]
Wrobel, Nicola [4 ]
Campbell, Archie [1 ]
Harris, Sarah E. [5 ]
Liewald, David [5 ]
Hayward, Caroline [1 ,6 ]
Sudlow, Cathie [7 ,8 ,9 ]
Cox, Simon R. [5 ]
Evans, Kathryn L. [1 ]
Horvath, Steve [2 ,3 ]
McIntosh, Andrew M. [1 ,10 ]
Robinson, Matthew R. [11 ]
Vallejos, Catalina A. [6 ,12 ]
Marioni, Riccardo E. [1 ]
机构
[1] Univ Edinburgh, Inst Genet & Canc, Ctr Genom & Expt Med, Edinburgh, Scotland
[2] Univ Calif Los Angeles, David Geffen Sch Med, Dept Human Genet, Los Angeles, CA USA
[3] Altos Labs, San Diego, CA USA
[4] Univ Edinburgh, Edinburgh Clin Res Facil, Edinburgh, Scotland
[5] Univ Edinburgh, Dept Psychol, Lothian Birth Cohorts, Edinburgh, Scotland
[6] Univ Edinburgh, Inst Genet & Canc, Med Res Council, Human Genet Unit, Edinburgh, Scotland
[7] Univ Edinburgh, Ctr Clin Brain Sci, Edinburgh, Scotland
[8] Hlth Data Res UK, BHF Data Sci Ctr, London, England
[9] Univ Edinburgh, Usher Inst, Edinburgh Med Sch, Edinburgh, Scotland
[10] Univ Edinburgh, Royal Edinburgh Hosp, Div Psychiat, Edinburgh, Scotland
[11] IST Austria, Klosterneuburg, Austria
[12] Alan Turing Inst, London, England
基金
英国经济与社会研究理事会; 英国惠康基金; 英国科研创新办公室; 英国医学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
C-REACTIVE PROTEIN; CARDIOVASCULAR RISK-FACTORS; EPIGENOME-WIDE ASSOCIATION; DNA METHYLATION; CHRONIC INFLAMMATION; F2RL3; METHYLATION; GROWTH-HORMONE; BLOOD DNA; LIFE-SPAN; MORTALITY;
D O I
10.1186/s13073-023-01161-y
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
BackgroundEpigenetic clocks can track both chronological age (cAge) and biological age (bAge). The latter is typically defined by physiological biomarkers and risk of adverse health outcomes, including all-cause mortality. As cohort sample sizes increase, estimates of cAge and bAge become more precise. Here, we aim to develop accurate epigenetic predictors of cAge and bAge, whilst improving our understanding of their epigenomic architecture.MethodsFirst, we perform large-scale (N = 18,413) epigenome-wide association studies (EWAS) of chronological age and all-cause mortality. Next, to create a cAge predictor, we use methylation data from 24,674 participants from the Generation Scotland study, the Lothian Birth Cohorts (LBC) of 1921 and 1936, and 8 other cohorts with publicly available data. In addition, we train a predictor of time to all-cause mortality as a proxy for bAge using the Generation Scotland cohort (1214 observed deaths). For this purpose, we use epigenetic surrogates (EpiScores) for 109 plasma proteins and the 8 component parts of GrimAge, one of the current best epigenetic predictors of survival. We test this bAge predictor in four external cohorts (LBC1921, LBC1936, the Framingham Heart Study and the Women's Health Initiative study).ResultsThrough the inclusion of linear and non-linear age-CpG associations from the EWAS, feature pre-selection in advance of elastic net regression, and a leave-one-cohort-out (LOCO) cross-validation framework, we obtain cAge prediction with a median absolute error equal to 2.3 years. Our bAge predictor was found to slightly outperform GrimAge in terms of the strength of its association to survival (HRGrimAge = 1.47 [1.40, 1.54] with p = 1.08 x 10(-52), and HRbAge = 1.52 [1.44, 1.59] with p = 2.20 x 10(-60)). Finally, we introduce MethylBrowsR, an online tool to visualise epigenome-wide CpG-age associations.ConclusionsThe integration of multiple large datasets, EpiScores, non-linear DNAm effects, and new approaches to feature selection has facilitated improvements to the blood-based epigenetic prediction of biological and chronological age.
引用
收藏
页数:15
相关论文
共 86 条
[1]   Growth Hormone Deficiency: Health and Longevity [J].
Aguiar-Oliveira, Manuel H. ;
Bartke, Andrzej .
ENDOCRINE REVIEWS, 2019, 40 (02) :575-601
[2]   Age-associated DNA methylation in pediatric populations [J].
Alisch, Reid S. ;
Barwick, Benjamin G. ;
Chopra, Pankaj ;
Myrick, Leila K. ;
Satten, Glen A. ;
Conneely, Karen N. ;
Warren, Stephen T. .
GENOME RESEARCH, 2012, 22 (04) :623-632
[3]  
Anderson G, 1998, CONTROL CLIN TRIALS, V19, P61
[4]   Implementation of the Women's Health Initiative Study Design [J].
Anderson, GL ;
Manson, J ;
Wallace, R ;
Lund, B ;
Hall, D ;
Davis, S ;
Shumaker, S ;
Wang, CY ;
Stein, E ;
Prentice, RL .
ANNALS OF EPIDEMIOLOGY, 2003, 13 (09) :S5-S17
[5]  
[Anonymous], THYMUS REGENERATION
[6]   Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays [J].
Aryee, Martin J. ;
Jaffe, Andrew E. ;
Corrada-Bravo, Hector ;
Ladd-Acosta, Christine ;
Feinberg, Andrew P. ;
Hansen, Kasper D. ;
Irizarry, Rafael A. .
BIOINFORMATICS, 2014, 30 (10) :1363-1369
[7]   Growth Hormone and Aging: Updated Review [J].
Bartke, Andrzej .
WORLD JOURNAL OF MENS HEALTH, 2019, 37 (01) :19-30
[8]  
Battram Thomas, 2022, Wellcome Open Res, V7, P41, DOI 10.12688/wellcomeopenres.17598.1
[9]   A Feature Selection Algorithm to Compute Gene Centric Methylation from Probe Level Methylation Data [J].
Baur, Brittany ;
Bozdag, Serdar .
PLOS ONE, 2016, 11 (02)
[10]   Methylation of FKBP5 is associated with accelerated DNA methylation ageing and cardiometabolic risk: replication in young-adult and middle-aged Black Americans [J].
Beach, Steven R. H. ;
Ong, Mei Ling ;
Lei, Man-Kit ;
Carter, Sierra E. ;
Simons, Ronald L. ;
Gibbons, Frederick X. ;
Philibert, Robert A. .
EPIGENETICS, 2022, 17 (09) :982-1002