Refining epigenetic prediction of chronological and biological age

被引:45
|
作者
Bernabeu, Elena [1 ]
McCartney, Daniel L. [1 ]
Gadd, Danni A. [1 ]
Hillary, Robert F. [1 ]
Lu, Ake T. T. [2 ,3 ]
Murphy, Lee [4 ]
Wrobel, Nicola [4 ]
Campbell, Archie [1 ]
Harris, Sarah E. [5 ]
Liewald, David [5 ]
Hayward, Caroline [1 ,6 ]
Sudlow, Cathie [7 ,8 ,9 ]
Cox, Simon R. [5 ]
Evans, Kathryn L. [1 ]
Horvath, Steve [2 ,3 ]
McIntosh, Andrew M. [1 ,10 ]
Robinson, Matthew R. [11 ]
Vallejos, Catalina A. [6 ,12 ]
Marioni, Riccardo E. [1 ]
机构
[1] Univ Edinburgh, Inst Genet & Canc, Ctr Genom & Expt Med, Edinburgh, Scotland
[2] Univ Calif Los Angeles, David Geffen Sch Med, Dept Human Genet, Los Angeles, CA USA
[3] Altos Labs, San Diego, CA USA
[4] Univ Edinburgh, Edinburgh Clin Res Facil, Edinburgh, Scotland
[5] Univ Edinburgh, Dept Psychol, Lothian Birth Cohorts, Edinburgh, Scotland
[6] Univ Edinburgh, Inst Genet & Canc, Med Res Council, Human Genet Unit, Edinburgh, Scotland
[7] Univ Edinburgh, Ctr Clin Brain Sci, Edinburgh, Scotland
[8] Hlth Data Res UK, BHF Data Sci Ctr, London, England
[9] Univ Edinburgh, Usher Inst, Edinburgh Med Sch, Edinburgh, Scotland
[10] Univ Edinburgh, Royal Edinburgh Hosp, Div Psychiat, Edinburgh, Scotland
[11] IST Austria, Klosterneuburg, Austria
[12] Alan Turing Inst, London, England
基金
英国惠康基金; 英国医学研究理事会; 英国科研创新办公室; 英国经济与社会研究理事会; 英国生物技术与生命科学研究理事会;
关键词
C-REACTIVE PROTEIN; CARDIOVASCULAR RISK-FACTORS; EPIGENOME-WIDE ASSOCIATION; DNA METHYLATION; CHRONIC INFLAMMATION; F2RL3; METHYLATION; GROWTH-HORMONE; BLOOD DNA; LIFE-SPAN; MORTALITY;
D O I
10.1186/s13073-023-01161-y
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
BackgroundEpigenetic clocks can track both chronological age (cAge) and biological age (bAge). The latter is typically defined by physiological biomarkers and risk of adverse health outcomes, including all-cause mortality. As cohort sample sizes increase, estimates of cAge and bAge become more precise. Here, we aim to develop accurate epigenetic predictors of cAge and bAge, whilst improving our understanding of their epigenomic architecture.MethodsFirst, we perform large-scale (N = 18,413) epigenome-wide association studies (EWAS) of chronological age and all-cause mortality. Next, to create a cAge predictor, we use methylation data from 24,674 participants from the Generation Scotland study, the Lothian Birth Cohorts (LBC) of 1921 and 1936, and 8 other cohorts with publicly available data. In addition, we train a predictor of time to all-cause mortality as a proxy for bAge using the Generation Scotland cohort (1214 observed deaths). For this purpose, we use epigenetic surrogates (EpiScores) for 109 plasma proteins and the 8 component parts of GrimAge, one of the current best epigenetic predictors of survival. We test this bAge predictor in four external cohorts (LBC1921, LBC1936, the Framingham Heart Study and the Women's Health Initiative study).ResultsThrough the inclusion of linear and non-linear age-CpG associations from the EWAS, feature pre-selection in advance of elastic net regression, and a leave-one-cohort-out (LOCO) cross-validation framework, we obtain cAge prediction with a median absolute error equal to 2.3 years. Our bAge predictor was found to slightly outperform GrimAge in terms of the strength of its association to survival (HRGrimAge = 1.47 [1.40, 1.54] with p = 1.08 x 10(-52), and HRbAge = 1.52 [1.44, 1.59] with p = 2.20 x 10(-60)). Finally, we introduce MethylBrowsR, an online tool to visualise epigenome-wide CpG-age associations.ConclusionsThe integration of multiple large datasets, EpiScores, non-linear DNAm effects, and new approaches to feature selection has facilitated improvements to the blood-based epigenetic prediction of biological and chronological age.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] A Targeted Epigenetic Clock for the Prediction of Biological Age
    Gensous, Noemie
    Sala, Claudia
    Pirazzini, Chiara
    Ravaioli, Francesco
    Milazzo, Maddalena
    Kwiatkowska, Katarzyna Malgorzata
    Marasco, Elena
    De Fanti, Sara
    Giuliani, Cristina
    Pellegrini, Camilla
    Santoro, Aurelia
    Capri, Miriam
    Salvioli, Stefano
    Monti, Daniela
    Castellani, Gastone
    Franceschi, Claudio
    Bacalini, Maria Giulia
    Garagnani, Paolo
    CELLS, 2022, 11 (24)
  • [2] Prediction of chronological and biological age from laboratory data
    Sagers, Luke
    Melas-Kyriazi, Luke
    Patel, Chirag J.
    Manrai, Arjun K.
    AGING-US, 2020, 12 (09): : 7626 - 7638
  • [3] Epigenetic age prediction
    Simpson, Daniel J.
    Chandra, Tamir
    AGING CELL, 2021, 20 (09)
  • [4] Epigenetic aging: Biological age prediction and informing a mechanistic theory of aging
    Li, Adam
    Koch, Zane
    Ideker, Trey
    JOURNAL OF INTERNAL MEDICINE, 2022, 292 (05) : 733 - 744
  • [5] Centenarians consistently present a younger epigenetic age than their chronological age with four epigenetic clocks based on a small number of CpG sites
    Daunay, Antoine
    Hardy, Lise M.
    Bouyacoub, Yosra
    Sahbatou, Mourad
    Touvier, Mathilde
    Blanche, Helene
    Deleuze, Jean-Francois
    How-Kit, Alexandre
    AGING-US, 2022, 14 (19): : 7718 - 7733
  • [6] Chronological Age or Biological Age, Mainly a Matter of Lifestyle
    Veiga Jardim, Paulo Cesar B.
    Veiga Jardim, Thiago De Souza
    ARQUIVOS BRASILEIROS DE CARDIOLOGIA, 2021, 117 (03) : 463 - 464
  • [7] Epigenetic Clock Explains White Matter Hyperintensity Burden Irrespective of Chronological Age
    Jimenez-Balado, Joan
    Giralt-Steinhauer, Eva
    Fernandez-Perez, Isabel
    Rey, Lucia
    Cuadrado-Godia, Elisa
    Ois, Angel
    Rodriguez-Campello, Ana
    Soriano-Tarraga, Carolina
    Lazcano, Uxue
    Macias-Gomez, Adria
    Suarez-Perez, Antoni
    Revert, Anna
    Estragues, Isabel
    Beltran-Marmol, Brigitte
    Medrano-Martorell, Santiago
    Capellades, Jaume
    Roquer, Jaume
    Jimenez-Conde, Jordi
    BIOLOGY-BASEL, 2023, 12 (01):
  • [8] Biological age is better than chronological as predictor of 3-month outcome in ischemic stroke
    Soriano-Tarraga, Carolina
    Mola-Caminal, Marina
    Giralt-Steinhauer, Eva
    Ois, Angel
    Rodriguez-Campello, Ana
    Cuadrado-Godia, Elisa
    Gomez-Gonzalez, Alejandra
    Vivanco-Hidalgo, Rosa M.
    Fernandez-Cadenas, Israel
    Cullell, Natalia
    Roquer, Jaume
    Jimenez-Conde, Jordi
    NEUROLOGY, 2017, 89 (08) : 830 - 836
  • [9] Epigenetic Age Acceleration and Chronological Age: Associations With Cognitive Performance in Daily Life
    Zavala, Daisy, V
    Dzikowski, Natalie
    Gopalan, Shyamalika
    Harrington, Karra D.
    Pasquini, Giancarlo
    Mogle, Jacqueline
    Reid, Kerry
    Sliwinski, Martin
    Graham-Engeland, Jennifer E.
    Engeland, Christopher G.
    Bernard, Kristin
    Veeramah, Krishna
    Scott, Stacey B.
    JOURNALS OF GERONTOLOGY SERIES A-BIOLOGICAL SCIENCES AND MEDICAL SCIENCES, 2024, 79 (01):
  • [10] Epigenetic and Metabolomic Biomarkers for Biological Age: A Comparative Analysis of Mortality and Frailty Risk
    Kuiper, Lieke M.
    Polinder-Bos, Harmke A.
    Bizzarri, Daniele
    Vojinovic, Dina
    Vallerga, Costanza L.
    Beekman, Marian
    Dolle, E. T.
    Ghanbari, Mohsen
    Voortman, Trudy
    Reinders, Marcel J. T.
    Verschuren, W. M. Monique
    Slagboom, P. Eline
    van den Akker, Erik B.
    van Meurs, Joyce B. J.
    JOURNALS OF GERONTOLOGY SERIES A-BIOLOGICAL SCIENCES AND MEDICAL SCIENCES, 2023, 78 (10): : 1753 - 1762