Thermodynamics of 1-ethyl-3-methylimidazolium and 1-butyl-3-methylimidazolium chlorides

被引:4
|
作者
Kalinyuk, D. A. [1 ,3 ]
Druzhinina, A. I. [1 ]
Tiflova, L. A. [1 ]
Dorofeeva, O. V. [1 ]
Golubev, Y. V. [2 ]
Iliyn, D. Yu [1 ]
Semavin, K. D. [1 ]
Chilingarov, N. S. [1 ]
机构
[1] Lomonosov Moscow State Univ, Chem Dept, Moscow, Russia
[2] RAS, AVTopchiev Inst Petrochem Synth, TIPS RAS, Moscow, Russia
[3] Mari State Univ, Yoshkar Ola, Russia
基金
俄罗斯科学基金会;
关键词
1-ethyl-3-methylimidazolium chloride; 1-butyl-3-methylimidazolium chloride; Ionic liquid; Heat capacity; Entropy; Gibbs energy; Enthalpy; Functions of formation; Melting; Vaporization; Adiabatic calorimetry; Dissolution; TEMPERATURE IONIC LIQUIDS; HEAT-CAPACITY; THERMAL-STABILITY; PHYSICOCHEMICAL CHARACTERIZATION; THERMOPHYSICAL PROPERTIES; AQUEOUS-SOLUTION; THERMOCHEMISTRY; EQUILIBRIA; SOLVENTS; BROMIDE;
D O I
10.1016/j.jct.2022.107000
中图分类号
O414.1 [热力学];
学科分类号
摘要
A comprehensive thermodynamic study of two ionic liquids EmimCl and BmimCl were carried out by experimental and calculation methods. Isobaric heat capacity of crystal and liquid EmimCl was determined by low temperature vacuum adiabatic calorimetry in the temperature range from 8 to 376 K. Experimental heat capacity curve of crystal EmimCl and literature data of BmimCl were fitted by linear combination of Einstein's functions and were integrated; as a result, the following thermodynamic functions for EmimCl and BmimCl were calculated: standard entropy S0m(T), heat content H0m(T)-H0m(0) and Gibbs energy G0m(T)-H0m(0). Melting parameters of these substances were measured by DSC and adiabatic calorimetry. Standard enthalpies of dissolution of crystal EmimCl and BmimCl in water at 298.15 K were measured by isothermal solution calorimetry. Based on these data, standard enthalpies, entropies and Gibbs energies of formation were calculated for crystal and liquid phases of EmimCl and BmimCl at 298.15 K. Standard enthalpies of EmimCl and BmimCl formation in the gaseous state at 298.15 K were defined via quantum chemistry methods. The analysis and comparison of the obtained thermodynamic characteristics with the literature data was carried out.
引用
收藏
页数:14
相关论文
共 50 条
  • [11] Conductometric Studies of 1-Ethyl-3-methylimidazolium Tetrafluoroborate and 1-Butyl-3-methylimidazolium Tetrafluoroborate in 1-Propanol at Temperatures from (283.15 to 318.15) K
    Borun, Agnieszka
    Bald, Adam
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2014, 9 (06): : 2790 - 2804
  • [12] Evaluation of the thermal stability and pyrolysis mechanism of 1-ethyl-3-methylimidazolium dicyanamide and 1-Butyl-3-methylimidazolium dicyanamide by STA, DSC, TG-FTIR
    Liu, Shang-Hao
    Xia, Rui
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2023, 85
  • [13] Surface tension and viscosity of 1-butyl-3-methylimidazolium iodide and 1-butyl-3-methylimidazolium tetrafluoroborate, and solubility of lithium bromide+1-butyl-3-methylimidazolium bromide in water
    Ki-Sub Kim
    Dorjnamjin Demberelnyamba
    Bae-Kun Shin
    Sun-Hwa Yeon
    Sukjeong Choi
    Jong-Ho Cha
    Huen Lee
    Chul-Soo Lee
    Jae-Jin Shim
    Korean Journal of Chemical Engineering, 2006, 23 : 113 - 116
  • [14] Electrochemical characteristics pyrolytic graphitelmixture of 1-ethyl-3-methylimidazolium tetrafluoroborate and 1-ethyl-3-methylimidazolium iodide interface
    Siinor, Liis
    Poom, Joosep
    Siimenson, Carolin
    Lust, Karmen
    Lust, Enn
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2014, 719 : 133 - 137
  • [15] Mixture of 1-ethyl-3-methylimidazolium tetrafluoroborate and 1-ethyl-3-methylimidazolium iodide: A new potential high capacitance electrolyte for EDLCs
    Siinor, Liis
    Siimenson, Carolin
    Lust, Karmen
    Lust, Enn
    ELECTROCHEMISTRY COMMUNICATIONS, 2013, 35 : 5 - 7
  • [16] Surface tension and viscosity of 1-butyl-3-methylimidazolium iodide and 1-butyl-3-methylimidazolium tetrafluoroborate, and solubility of lithium bromide+1-butyl-3-methylimidazolium bromide in water
    Kim, KS
    Demberelnyamba, D
    Shin, BK
    Yeon, SH
    Choi, S
    Cha, JH
    Lee, H
    Lee, CS
    Shim, JJ
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2006, 23 (01) : 113 - 116
  • [17] Investigation on physical and electrochemical properties of three imidazolium based ionic liquids (1-hexyl-3-methylimidazolium tetrafluoroborate, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide and 1-butyl-3-methylimidazolium methylsulfate)
    Beigi, Ali Akbar Miran
    Abdouss, Majid
    Yousefi, Maryam
    Pourmortazavi, Seied Mandi
    Vahid, Amir
    JOURNAL OF MOLECULAR LIQUIDS, 2013, 177 : 361 - 368
  • [18] The Solubility of Carbon Dioxide and Density for Binary Mixtures of 1-Butyl-3-methylimidazolium Acetate and 1-Butyl-3-methylimidazolium Tetrafluoroborate
    Shaahmadi, Fariborz
    Shahraki, Bahram Hashemi
    Farhadi, Asadollah
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2019, 64 (02) : 584 - 593
  • [19] Effect of Water on the Viscosities and Densities of 1-Butyl-3-methylimidazolium Dicyanamide and 1-Butyl-3-methylimidazolium Tricyanomethane at Atmospheric Pressure
    Carvalho, Pedro J.
    Regueira, Teresa
    Santos, Luis M. N. B. F.
    Fernandez, Josefa
    Coutinho, Joao A. P.
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2010, 55 (02) : 645 - 652
  • [20] Isobaric molar heat capacities of 1-ethyl-3-methylimidazolium acetate and 1-hexyl-3-methylimidazolium acetate up to 16 MPa
    Su, Chao
    Liu, Xiangyang
    Zhu, Chenyang
    He, Maogang
    FLUID PHASE EQUILIBRIA, 2016, 427 : 187 - 193