A fast time two-mesh finite volume element algorithm for the nonlinear time-fractional coupled diffusion model

被引:10
作者
Fang, Zhichao [1 ]
Zhao, Jie [2 ]
Li, Hong [1 ]
Liu, Yang [1 ]
机构
[1] Inner Mongolia Univ, Sch Math Sci, Hohhot 010021, Peoples R China
[2] Inner Mongolia Univ Finance & Econ, Sch Math & Stat, Hohhot 010070, Peoples R China
基金
中国国家自然科学基金;
关键词
Time two-mesh algorithm; Finite volume element method; Nonlinear time-fractional coupled diffusion model; Existence and uniqueness; A priori error estimate; SUB-DIFFUSION; EQUATIONS; APPROXIMATIONS; SYSTEM; BEHAVIOR; COVOLUME; SCHEME;
D O I
10.1007/s11075-022-01444-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, a fast second-order finite volume element (FVE) algorithm is proposed to solve the nonlinear time-fractional coupled diffusion model based on the time two-mesh (TT-M) computing method. In this algorithm, the integer and RiemannLiouville fractional derivatives are approximated by the second-order backward difference formula and the WSGD formula respectively, the time interval is divided into coarse and fine meshes, then the three steps TT-M FVE algorithm is constructed by using the interpolation operator. The existence and uniqueness for the TT-M FVE algorithm are analyzed in detail, the asymptotically optimal a priori error estimates for variables u and v in the discrete L-infinity(L-2(Omega)) and L-2(H-1(Omega) norms are obtained. It is shown that when time coarse and fine mesh sizes satisfy tau(c) = O(tau(1/2)(f)), the fast algorithm can achieve the same accuracy as the FVE algorithm, and reduce more computational cost. Finally, some numerical results are given to demonstrate the efficiency of the proposed algorithm.
引用
收藏
页码:863 / 898
页数:36
相关论文
共 50 条
[21]   Fast two-grid finite volume element algorithms combined with Crank-Nicolson scheme for the nonlinear time fractional mobile/immobile transport model [J].
Fang, Zhichao ;
Zhao, Jie ;
Li, Hong ;
Liu, Yang .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2025,
[22]   Superconvergence of a finite element method for the time-fractional diffusion equation with a time-space dependent diffusivity [J].
An, Na .
ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
[23]   Galerkin finite element method for time-fractional stochastic diffusion equations [J].
Zou, Guang-an .
COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (04) :4877-4898
[24]   On the solutions of coupled nonlinear time-fractional diffusion-reaction system with time delays [J].
Priyendhu, K. S. ;
Prakash, P. ;
Lakshmanan, M. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2025, 234 (08) :2171-2189
[25]   Finite element error analysis of a time-fractional nonlocal diffusion equation with the Dirichlet energy [J].
Manimaran, J. ;
Shangerganesh, L. ;
Debbouche, Amar .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 382 (382)
[26]   L2-1σ Finite Element Method for Time-Fractional Diffusion Problems with Discontinuous Coefficients [J].
Chen, Yanping ;
Tan, Xuejiao ;
Huang, Yunqing .
EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2023, 13 (04) :813-834
[27]   Quadratic Finite Volume Element Schemes over Triangular Meshes for a Nonlinear Time-Fractional Rayleigh-Stokes Problem [J].
Zhang, Yanlong ;
Zhou, Yanhui ;
Wu, Jiming .
CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2021, 127 (02) :487-514
[28]   Finite volume element methods for two-dimensional time fractional reaction-diffusion equations on triangular grids [J].
Fang, Zhichao ;
Zhao, Jie ;
Li, Hong ;
Liu, Yang .
APPLICABLE ANALYSIS, 2023, 102 (08) :2248-2270
[29]   Finite difference/finite element method for a nonlinear time-fractional fourth-order reaction-diffusion problem [J].
Liu, Yang ;
Du, Yanwei ;
Li, Hong ;
He, Siriguleng ;
Gao, Wei .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 70 (04) :573-591
[30]   A two-grid mixed finite volume element method for nonlinear time fractional reaction-diffusion equations [J].
Fang, Zhichao ;
Du, Ruixia ;
Li, Hong ;
Liu, Yang .
AIMS MATHEMATICS, 2022, 7 (02) :1941-1970