A fast time two-mesh finite volume element algorithm for the nonlinear time-fractional coupled diffusion model

被引:7
|
作者
Fang, Zhichao [1 ]
Zhao, Jie [2 ]
Li, Hong [1 ]
Liu, Yang [1 ]
机构
[1] Inner Mongolia Univ, Sch Math Sci, Hohhot 010021, Peoples R China
[2] Inner Mongolia Univ Finance & Econ, Sch Math & Stat, Hohhot 010070, Peoples R China
基金
中国国家自然科学基金;
关键词
Time two-mesh algorithm; Finite volume element method; Nonlinear time-fractional coupled diffusion model; Existence and uniqueness; A priori error estimate; SUB-DIFFUSION; EQUATIONS; APPROXIMATIONS; SYSTEM; BEHAVIOR; COVOLUME; SCHEME;
D O I
10.1007/s11075-022-01444-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, a fast second-order finite volume element (FVE) algorithm is proposed to solve the nonlinear time-fractional coupled diffusion model based on the time two-mesh (TT-M) computing method. In this algorithm, the integer and RiemannLiouville fractional derivatives are approximated by the second-order backward difference formula and the WSGD formula respectively, the time interval is divided into coarse and fine meshes, then the three steps TT-M FVE algorithm is constructed by using the interpolation operator. The existence and uniqueness for the TT-M FVE algorithm are analyzed in detail, the asymptotically optimal a priori error estimates for variables u and v in the discrete L-infinity(L-2(Omega)) and L-2(H-1(Omega) norms are obtained. It is shown that when time coarse and fine mesh sizes satisfy tau(c) = O(tau(1/2)(f)), the fast algorithm can achieve the same accuracy as the FVE algorithm, and reduce more computational cost. Finally, some numerical results are given to demonstrate the efficiency of the proposed algorithm.
引用
收藏
页码:863 / 898
页数:36
相关论文
共 50 条
  • [1] A fast time two-mesh finite volume element algorithm for the nonlinear time-fractional coupled diffusion model
    Zhichao Fang
    Jie Zhao
    Hong Li
    Yang Liu
    Numerical Algorithms, 2023, 93 : 863 - 898
  • [2] Time two-mesh algorithm combined with finite element method for time fractional water wave model
    Liu, Yang
    Yu, Zudeng
    Li, Hong
    Liu, Fawang
    Wang, Jinfeng
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 120 : 1132 - 1145
  • [3] Finite element analysis for coupled time-fractional nonlinear diffusion system
    Kumar, Dileep
    Chaudhary, Sudhakar
    Kumar, V. V. K. Srinivas
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (06) : 1919 - 1936
  • [4] Optimal time two-mesh mixed finite element method for a nonlinear fractional hyperbolic wave model
    Yang, Yining
    Wen, Cao
    Liu, Yang
    Li, Hong
    Wang, Jinfeng
    COMMUNICATIONS IN ANALYSIS AND MECHANICS, 2024, 16 (01): : 24 - 52
  • [5] Unconditionally optimal time two-mesh mixed finite element algorithm for a nonlinear fourth-order distributed-order time fractional diffusion equation
    Wen, Cao
    Wang, Jinfeng
    Liu, Yang
    Li, Hong
    Fang, Zhichao
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 460
  • [6] Fast second-order time two-mesh mixed finite element method for a nonlinear distributed-order sub-diffusion model
    Cao Wen
    Yang Liu
    Baoli Yin
    Hong Li
    Jinfeng Wang
    Numerical Algorithms, 2021, 88 : 523 - 553
  • [7] Fast second-order time two-mesh mixed finite element method for a nonlinear distributed-order sub-diffusion model
    Wen, Cao
    Liu, Yang
    Yin, Baoli
    Li, Hong
    Wang, Jinfeng
    NUMERICAL ALGORITHMS, 2021, 88 (02) : 523 - 553
  • [8] Galerkin finite element schemes with fractional Crank–Nicolson method for the coupled time-fractional nonlinear diffusion system
    Dileep Kumar
    Sudhakar Chaudhary
    V. V. K. Srinivas Kumar
    Computational and Applied Mathematics, 2019, 38
  • [9] A Fast Time Two-Mesh Algorithm for Allen–Cahn Equation
    Danxia Wang
    Qingqing Du
    Jianwen Zhang
    Hongen Jia
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 2417 - 2441
  • [10] Two Mixed Finite Element Methods for Time-Fractional Diffusion Equations
    Yanmin Zhao
    Pan Chen
    Weiping Bu
    Xiangtao Liu
    Yifa Tang
    Journal of Scientific Computing, 2017, 70 : 407 - 428