Machine Learning-Guided Optimization of p-Coumaric Acid Production in Yeast

被引:9
作者
Moreno-Paz, Sara [1 ]
van der Hoek, Rianne [2 ]
Eliana, Elif [1 ]
Zwartjens, Priscilla [2 ]
Gosiewska, Silvia [2 ]
dos Santos, Vitor A. P. Martins [3 ]
Schmitz, Joep [2 ]
Suarez-Diez, Maria [1 ]
机构
[1] Wageningen Univ & Res, Lab Syst & Synthet Biol, NL-6708 WE Wageningen, Netherlands
[2] Dept Sci & Res, Dsm Firmenich, Sci & Res, NL-2600 MA Delft, Netherlands
[3] Wageningen Univ & Res, Bioproc Engn Grp, NL-6700 AA Wageningen, Netherlands
基金
欧盟地平线“2020”;
关键词
machine learning; DBTL; one-pot library; Saccharomyces cerevisiae; SACCHAROMYCES-CEREVISIAE; CELL;
D O I
10.1021/acssynbio.4c00035
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Industrial biotechnology uses Design-Build-Test-Learn (DBTL) cycles to accelerate the development of microbial cell factories, required for the transition to a biobased economy. To use them effectively, appropriate connections between the phases of the cycle are crucial. Using p-coumaric acid (pCA) production in Saccharomyces cerevisiae as a case study, we propose the use of one-pot library generation, random screening, targeted sequencing, and machine learning (ML) as links during DBTL cycles. We showed that the robustness and flexibility of the ML models strongly enable pathway optimization and propose feature importance and Shapley additive explanation values as a guide to expand the design space of original libraries. This approach allowed a 68% increased production of pCA within two DBTL cycles, leading to a 0.52 g/L titer and a 0.03 g/g yield on glucose.
引用
收藏
页码:1312 / 1322
页数:11
相关论文
共 36 条
[2]   Design of Experiments Methodology to Build a Multifactorial Statistical Model Describing the Metabolic Interactions of Alcohol Dehydrogenase Isozymes in the Ethanol Biosynthetic Pathway of the Yeast Saccharomyces cerevisiae [J].
Brown, Steven R. ;
Staff, Marta ;
Lee, Rob ;
Love, John ;
Parker, David A. ;
Aves, Stephen J. ;
Howard, Thomas P. .
ACS SYNTHETIC BIOLOGY, 2018, 7 (07) :1676-1684
[3]   An automated Design-Build-Test-Learn pipeline for enhanced microbial production of fine chemicals [J].
Carbonell, Pablo ;
Jervis, Adrian J. ;
Robinson, Christopher J. ;
Yan, Cunyu ;
Dunstan, Mark ;
Swainston, Neil ;
Vinaixa, Maria ;
Hollywood, Katherine A. ;
Currin, Andrew ;
Rattray, Nicholas J. W. ;
Taylor, Sandra ;
Spiess, Reynard ;
Sung, Rehana ;
Williams, Alan R. ;
Fellows, Donal ;
Stanford, Natalie J. ;
Mulherin, Paul ;
Le Feuvre, Rosalind ;
Barran, Perdita ;
Goodacre, Royston ;
Turner, Nicholas J. ;
Goble, Carole ;
Chen, George Guoqiang ;
Kell, Douglas B. ;
Micklefield, Jason ;
Breitling, Rainer ;
Takano, Eriko ;
Faulon, Jean-Loup ;
Scrutton, Nigel S. .
COMMUNICATIONS BIOLOGY, 2018, 1
[4]   Transcription interference and ORF nature strongly affect promoter strength in a reconstituted metabolic pathway [J].
Carquet, Marie ;
Pompon, Denis ;
Truan, Gilles .
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2015, 3
[5]   Efficient multiplexed gene regulation in Saccharomyces cerevisiae using dCas12a [J].
Ciurkot, Klaudia ;
Gorochowski, Thomas E. ;
Roubos, Johannes A. ;
Verwaal, Rene .
NUCLEIC ACIDS RESEARCH, 2021, 49 (13) :7775-7790
[6]   Anaerobic growth of Saccharomyces cerevisiae CEN.PK113-7D does not depend on synthesis or supplementation of unsaturated fatty acids [J].
Dekker, Wijb J. C. ;
Wiersma, Sanne J. ;
Bouwknegt, Jonna ;
Mooiman, Christiaan ;
Pronk, Jack T. .
FEMS YEAST RESEARCH, 2019, 19 (06)
[7]   CHORISMATE MUTASE-PREPHENATE DEHYDRATASE FROM ESCHERICHIA-COLI-K12 - EFFECTS OF CHEMICAL MODIFICATION ON ENZYMIC ACTIVITIES AND ALLOSTERIC INHIBITION [J].
GETHING, MJH ;
DAVIDSON, BE .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1977, 78 (01) :111-117
[8]   STUDIES ON THE TRANSFORMATION OF INTACT YEAST-CELLS BY THE LIAC/S-DNA/PEG PROCEDURE [J].
GIETZ, RD ;
SCHIESTL, RH ;
WILLEMS, AR ;
WOODS, RA .
YEAST, 1995, 11 (04) :355-360
[9]   Towards a fully automated algorithm driven platform for biosystems design [J].
HamediRad, Mohammad ;
Chao, Ran ;
Weisberg, Scott ;
Lian, Jiazhang ;
Sinha, Saurabh ;
Zhao, Huimin .
NATURE COMMUNICATIONS, 2019, 10 (1)
[10]   Cell-free synthetic biology: Thinking outside the cell [J].
Hodgman, C. Eric ;
Jewett, Michael C. .
METABOLIC ENGINEERING, 2012, 14 (03) :261-269