Diamond for High-Power, High-Frequency, and Terahertz Plasma Wave Electronics

被引:16
作者
Hasan, Muhammad Mahmudul [1 ]
Wang, Chunlei [2 ]
Pala, Nezih [1 ]
Shur, Michael [3 ]
机构
[1] Florida Int Univ, Elect & Comp Engn, Miami, FL 33174 USA
[2] Univ Miami, Mech & Aerosp Engn, Coral Gables, FL 33146 USA
[3] Rensselaer Polytech Inst, Elect Comp & Syst Engn, Troy, NY 12180 USA
关键词
diamond; terahertz (THz); electronics; single crystal growth; power electronics; high frequency FET; TeraFET; SINGLE-CRYSTAL DIAMOND; CHEMICAL-VAPOR-DEPOSITION; BIPOLAR JUNCTION TRANSISTOR; RATE HOMOEPITAXIAL GROWTH; FIELD-EFFECT TRANSISTOR; THIN-FILM DIAMOND; POLYCRYSTALLINE DIAMOND; SURFACE CONDUCTIVITY; ORIENTED DIAMOND; SCHOTTKY DIODES;
D O I
10.3390/nano14050460
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
High thermal conductivity and a high breakdown field make diamond a promising candidate for high-power and high-temperature semiconductor devices. Diamond also has a higher radiation hardness than silicon. Recent studies show that diamond has exceptionally large electron and hole momentum relaxation times, facilitating compact THz and sub-THz plasmonic sources and detectors working at room temperature and elevated temperatures. The plasmonic resonance quality factor in diamond TeraFETs could be larger than unity for the 240-600 GHz atmospheric window, which could make them viable for 6G communications applications. This paper reviews the potential and challenges of diamond technology, showing that diamond might augment silicon for high-power and high-frequency compact devices with special advantages for extreme environments and high-frequency applications.
引用
收藏
页数:35
相关论文
共 336 条
[1]   The control of growth parameters in the synthesis of high-quality single crystalline diamond by CVD [J].
Achard, J ;
Tallaire, A ;
Sussmann, R ;
Silva, F ;
Gicquel, A .
JOURNAL OF CRYSTAL GROWTH, 2005, 284 (3-4) :396-405
[2]   Effect of nitrogen on the electronic properties of ultrananocrystalline diamond thin films grown on quartz and diamond substrates [J].
Achatz, P. ;
Williams, O. A. ;
Bruno, P. ;
Gruen, D. M. ;
Garrido, J. A. ;
Stutzmann, M. .
PHYSICAL REVIEW B, 2006, 74 (15)
[3]   Lattice damage in 9-MeV-carbon irradiated diamond and its recovery after annealing [J].
Agullo-Rueda, F. ;
Gordillo, N. ;
Ynsa, M. D. ;
Maira, A. ;
Canas, J. ;
Ramos, M. A. .
CARBON, 2017, 123 :334-343
[4]   Low temperature catalytic reactivity of nanodiamond in molecular hydrogen [J].
Ahmed, Ashek-I ;
Mandal, Soumen ;
Gines, Laia ;
Williams, Oliver A. ;
Cheng, Chia-Liang .
CARBON, 2016, 110 :438-442
[5]   Overgrowth of diamond layers on diamond microneedles: New concept for freestanding diamond substrate by heteroepitaxy [J].
Aida, Hideo ;
Ikejiri, Kenjiro ;
Kim, Seong-Woo ;
Koyama, Koji ;
Kawamata, Yuki ;
Kodama, Hideyuki ;
Sawabe, Atsuhito .
DIAMOND AND RELATED MATERIALS, 2016, 66 :77-82
[6]   High carrier mobility in ultrapure diamond measured by time-resolved cyclotron resonance [J].
Akimoto, Ikuko ;
Handa, Yushi ;
Fukai, Katsuyuki ;
Naka, Nobuko .
APPLIED PHYSICS LETTERS, 2014, 105 (03)
[7]  
Akter N., 2021, Fundamentals of Terahertz Devices and Applications, P285
[8]   A Review of THz Technologies for Rapid Sensing and Detection of Viruses including SARS-CoV-2 [J].
Akter, Naznin ;
Hasan, Muhammad Mahmudul ;
Pala, Nezih .
BIOSENSORS-BASEL, 2021, 11 (10)
[9]   Critical boron-doping levels for generation of dislocations in synthetic diamond [J].
Alegre, M. P. ;
Araujo, D. ;
Fiori, A. ;
Pinero, J. C. ;
Lloret, F. ;
Villar, M. P. ;
Achatz, P. ;
Chicot, G. ;
Bustarret, E. ;
Jomard, F. .
APPLIED PHYSICS LETTERS, 2014, 105 (17)
[10]   Diamond diodes and transistors [J].
Aleksov, A ;
Denisenko, A ;
Kunze, M ;
Vescan, A ;
Bergmaier, A ;
Dollinger, G ;
Ebert, W ;
Kohn, E .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2003, 18 (03) :S59-S66