Simplified Approach to Predicting Obstructive Coronary Disease With Integration of Coronary Calcium: Development and External Validation

被引:0
作者
Miller, Robert J. H. [1 ,2 ]
Gransar, Heidi [1 ]
Rozanski, Alan [1 ,3 ,4 ,5 ]
Dey, Damini [1 ]
Al-Mallah, Mouaz [6 ]
Chow, Benjamin J. W. [7 ,8 ]
Kaufmann, Philipp A. [9 ]
Cademartiri, Filippo [10 ]
Maffei, Erica [11 ]
Han, Donghee [1 ]
Slomka, Piotr J. [1 ]
Berman, Daniel S. [1 ,12 ]
机构
[1] Cedars Sinai Med Ctr, Dept Med, Div Artificial Intelligence Med Imaging & Biomed S, Los Angeles, CA 90048 USA
[2] Univ Calgary, Libin Cardiovasc Inst Alberta, Calgary, AB, Canada
[3] Mt Sinai Heart, Mt Sinai Morningside Hosp, Div Cardiol, New York, NY USA
[4] Mt Sinai Heart, Mt Sinai Morningside Hosp, Dept Med, New York, NY USA
[5] Icahn Sch Med Mt Sinai, New York, NY USA
[6] Houston Methodist DeBakey Heart & Vasc Ctr, Houston, TX USA
[7] Univ Ottawa Heart Inst, Dept Med Cardiol & Nucl Med, Ottawa, ON, Canada
[8] Univ Ottawa Heart Inst, Dept Radiol, Ottawa, ON, Canada
[9] Univ Zurich, Univ Hosp Zurich, Dept Nucl Med, Zurich, Switzerland
[10] Fdn Monasterio, Dept Radiol, CNR, Pisa, Italy
[11] Ist Ricovero & Cura Carattere Sci IRCCS SYNLAB SDN, Naples, Italy
[12] Cedars Sinai Med Ctr, Room 1258,8700 Beverly Blvd, Los Angeles, CA 90048 USA
来源
JOURNAL OF THE AMERICAN HEART ASSOCIATION | 2023年 / 12卷 / 24期
基金
美国国家卫生研究院;
关键词
cardiovascular computed tomography; coronary artery disease; epidemiology; risk estimation; ARTERY CALCIUM; AMERICAN-COLLEGE; SUBCLINICAL ATHEROSCLEROSIS; CARDIOVASCULAR ANGIOGRAPHY; COMPUTED-TOMOGRAPHY; HEART-DISEASE; RISK-FACTORS; DIAGNOSIS; INTERVENTIONS; ASSOCIATION;
D O I
10.1161/JAHA.123.031601
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: The Diamond-Forrester model was used extensively to predict obstructive coronary artery disease (CAD) but overestimates probability in current populations. Coronary artery calcium (CAC) is a useful marker of CAD, which is not routinely integrated with other features. We derived simple likelihood tables, integrating CAC with age, sex, and cardiac chest pain to predict obstructive CAD.Methods and Results: The training population included patients from 3 multinational sites (n=2055), with 2 sites for external testing (n=3321). We determined associations between age, sex, cardiac chest pain, and CAC with the presence of obstructive CAD, defined as any stenosis >= 50% on coronary computed tomography angiography. Prediction performance was assessed using area under the receiver-operating characteristic curves (AUCs) and compared with the CAD Consortium models with and without CAC, which require detailed calculations, and the updated Diamond-Forrester model. In external testing, the proposed likelihood tables had higher AUC (0.875 [95% CI, 0.862-0.889]) than the CAD Consortium clinical+CAC score (AUC, 0.868 [95% CI, 0.855-0.881]; P=0.030) and the updated Diamond-Forrester model (AUC, 0.679 [95% CI, 0.658-0.699]; P<0.001). The calibration for the likelihood tables was better than the CAD Consortium model (Brier score, 0.116 versus 0.121; P=0.005).Conclusion: We have developed and externally validated simple likelihood tables to integrate CAC with age, sex, and cardiac chest pain, demonstrating improved prediction performance compared with other risk models. Our tool affords physicians with the opportunity to rapidly and easily integrate a small number of important features to estimate a patient's likelihood of obstructive CAD as an aid to clinical management.
引用
收藏
页数:11
相关论文
共 42 条
  • [1] QUANTIFICATION OF CORONARY-ARTERY CALCIUM USING ULTRAFAST COMPUTED-TOMOGRAPHY
    AGATSTON, AS
    JANOWITZ, WR
    HILDNER, FJ
    ZUSMER, NR
    VIAMONTE, M
    DETRANO, R
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 1990, 15 (04) : 827 - 832
  • [2] Machine learning of clinical variables and coronary artery calcium scoring for the prediction of obstructive coronary artery disease on coronary computed tomography angiography: analysis from the CONFIRM registry
    Al'Arefilb, Subhi J.
    Maliakal, Gabriel
    Singh, Gurpreet
    van Rosendael, Alexander R.
    Ma, Xiaoyue
    Xu, Zhuoran
    Alawamlh, Omar Al Hussein
    Lee, Benjamin
    Pandey, Mohit
    Achenbach, Stephan
    Al-Mallah, Mouaz H.
    Andreini, Daniele
    Bax, Jeroen J.
    Berman, Daniel S.
    Budoff, Matthew J.
    Cademartiri, Filippo
    Canister, Tracy Q.
    Chang, Hyuk-Jae
    Chinnaiyan, Kavitha
    Chow, Benjamin J. W.
    Cury, Ricardo C.
    DeLago, Augustin
    Feuchtner, Gudrun
    Hadamitzky, Martin
    Hausleiter, Joerg
    Kaufmann, Philipp A.
    Kim, Yong-Jin
    Leipsic, Jonathon A.
    Maffei, Erica
    Marques, Hugo
    Goncalves, Pedro de Araujo
    Pontone, Gianluca
    Raff, Gilbert L.
    Rubinshtein, Ronen
    Villines, Todd C.
    Gransar, Heidi
    Lu, Yao
    Jones, Erica C.
    Pena, Jessica M.
    Lin, Fay Y.
    Min, James K.
    Shaw, Leslee J.
    [J]. EUROPEAN HEART JOURNAL, 2020, 41 (03) : 359 - 367
  • [3] A Tutorial on Multilevel Survival Analysis: Methods, Models and Applications
    Austin, Peter C.
    [J]. INTERNATIONAL STATISTICAL REVIEW, 2017, 85 (02) : 185 - 203
  • [4] A Comparison of the Updated Diamond-Forrester, CAD Consortium, and CONFIRM History-Based Risk Scores for Predicting Obstructive Coronary Artery Disease in Patients With Stable Chest Pain The SCOT-HEART Coronary CTA Cohort
    Baskaran, Lohendran
    Danad, Ibrahim
    Gransar, Heidi
    Hartaigh, Briain O.
    Schulman-Marcus, Joshua
    Lin, Fay Y.
    Pena, Jessica M.
    Hunter, Amanda
    Newby, David E.
    Adamson, Philip D.
    Min, James K.
    [J]. JACC-CARDIOVASCULAR IMAGING, 2019, 12 (07) : 1392 - 1400
  • [5] Brier GW., 1950, MON WEATHER REV, V78, P1, DOI [DOI 10.1175/1520-0493(1950)0782.0.CO
  • [6] 2, 2.0.CO
  • [7] 2, DOI 10.1175/1520-0493(1950)078ANDLT
  • [8] 0001:VOFEITANDGT
  • [9] 2.0.CO
  • [10] 2]