Estimating Aboveground Biomass of Alpine Grassland During the Wilting Period Using In Situ Hyperspectral, Sentinel-2, and Sentinel-1 Data

被引:6
|
作者
Guo, Rui [1 ,2 ]
Gao, Jinlong [1 ,2 ]
Fu, Shuai [1 ,2 ]
Xiu, Yangjing [1 ,2 ]
Zhang, Shuhui [1 ,2 ]
Huang, Xiaodong [1 ,2 ]
Feng, Qisheng [1 ,2 ]
Liang, Tiangang [1 ,2 ]
机构
[1] Lanzhou Univ, State Key Lab Herbage Improvement & Grassland Agro, Key Lab Grassland Livestock Ind Innovat, Engn Res Ctr Grassland Ind,Minist Educ, Lanzhou 730000, Peoples R China
[2] Lanzhou Univ, Coll Pastoral Agr Sci & Technol, Lanzhou 730000, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2024年 / 62卷
关键词
Above-ground biomass (AGB); alpine grassland; data fusion; multisource remote sensing; wilting period; NONPHOTOSYNTHETIC VEGETATION BIOMASS; NONNEGATIVE MATRIX FACTORIZATION; LEAF-AREA INDEX; CROP RESIDUE; SOIL; COVER; REFLECTANCE; FIELD; SENSITIVITY; PARAMETERS;
D O I
10.1109/TGRS.2023.3341956
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Accurately estimating of grassland above-ground biomass (AGB) during the wilting period is vital in the dynamic monitoring of vegetation survey, carbon storage research, and grazing livestock supplementation. However, previous studies on grassland AGB during the wilting period have rarely involved the integration of ground-based in situ hyperspectral data and satellite images. In this study, we proposed a multisource remote sensing monitoring approach for grassland AGB based on the differential fusion of satellite-ground spectral data from 139 sample sites collected during the grassland's wilting period (September-November) on the northeastern Tibetan Plateau. First, the in situ hyperspectral data and Sentinel-2 images were differentiated fusion by using the nonnegative matrix factorization (NMF) method. Then, the Sentinel-1 synthetic aperture radar (SAR) images were further integrated to develop the random forest (RF) model for estimating AGB in the grassland's wilting period. The results showed that: 1) the NMF-based differentiated fusion model (R-2 = 0.60 and root mean-square error (RMSE) = 586.56 kg/ha) effectively improved the estimation accuracy of AGB for the grassland wilting period compared with the Sentinel-2 satellite model (R-2 = 0.54 and RMSE = 627.53 kg/ha); 2) the vegetation indices (VIs) derived from short-wave infrared (SWIR) bands are sensitive to variations of grassland AGB during wilting, which have great potential in the estimation of grassland AGB; and 3) the grassland AGB model's performance is only slightly improved by adding Sentinel-1 SAR data and no more significantly positive synergistic effect on the model performance was observed. Overall, this study's proposed satellite-ground collaborative monitoring method integrates the advantages of multisource remote sensing data and is expected to further improve the large-scale and high-accuracy monitoring capability for alpine grassland AGB during the wilting period.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [21] Fast Urban Land Cover Mapping Exploiting Sentinel-1 and Sentinel-2 Data
    Petrushevsky, Naomi
    Manzoni, Marco
    Monti-Guarnieri, Andrea
    REMOTE SENSING, 2022, 14 (01)
  • [22] Estimating aboveground biomass of grassland having a high canopy cover: an exploratory analysis of in situ hyperspectral data
    Chen, Jin
    Gu, Song
    Shen, Miaogen
    Tang, Yanhong
    Matsushita, Bunkei
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2009, 30 (24) : 6497 - 6517
  • [23] Fusion of Sentinel-1 and Sentinel-2 data in mapping the impervious surfaces at city scale
    Shrestha, Binita
    Ahmad, Sajjad
    Stephen, Haroon
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2021, 193 (09)
  • [24] Sentinel-1 and Sentinel-2 data fusion to distinguish building damage level of the 2018 Lombok Earthquake
    Putri, Ade Febri Sandhini
    Widyatmanti, Wirastuti
    Umarhadi, Deha Agus
    REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2022, 26
  • [25] ON THE FUSION STRATEGIES OF SENTINEL-1 AND SENTINEL-2 DATA FOR LOCAL CLIMATE ZONE CLASSIFICATION
    Gawlikowski, Jakob
    Schmitt, Michael
    Kruspe, Anna
    Zhu, Xiao Xiang
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2081 - 2084
  • [26] Fusion of Sentinel-1 and Sentinel-2 data in mapping the impervious surfaces at city scale
    Binita Shrestha
    Sajjad Ahmad
    Haroon Stephen
    Environmental Monitoring and Assessment, 2021, 193
  • [27] Integration of Sentinel-1 and Sentinel-2 Data for Land Cover Mapping Using W-Net
    Gargiulo, Massimiliano
    Dell'Aglio, Domenico A. G.
    Iodice, Antonio
    Riccio, Daniele
    Ruello, Giuseppe
    SENSORS, 2020, 20 (10)
  • [28] Unsupervised domain adaptation for global urban extraction using Sentinel-1 SAR and Sentinel-2 MSI data
    Hafner, Sebastian
    Ban, Yifang
    Nascetti, Andrea
    REMOTE SENSING OF ENVIRONMENT, 2022, 280
  • [29] A Comprehensive Comparison of Machine Learning and Feature Selection Methods for Maize Biomass Estimation Using Sentinel-1 SAR, Sentinel-2 Vegetation Indices, and Biophysical Variables
    Xu, Chi
    Ding, Yanling
    Zheng, Xingming
    Wang, Yeqiao
    Zhang, Rui
    Zhang, Hongyan
    Dai, Zewen
    Xie, Qiaoyun
    REMOTE SENSING, 2022, 14 (16)
  • [30] Exploiting time series of Sentinel-1 and Sentinel-2 to detect grassland mowing events using deep learning with reject region
    Komisarenko, Viacheslav
    Voormansik, Kaupo
    Elshawi, Radwa
    Sakr, Sherif
    SCIENTIFIC REPORTS, 2022, 12 (01)