Estimating Aboveground Biomass of Alpine Grassland During the Wilting Period Using In Situ Hyperspectral, Sentinel-2, and Sentinel-1 Data

被引:6
|
作者
Guo, Rui [1 ,2 ]
Gao, Jinlong [1 ,2 ]
Fu, Shuai [1 ,2 ]
Xiu, Yangjing [1 ,2 ]
Zhang, Shuhui [1 ,2 ]
Huang, Xiaodong [1 ,2 ]
Feng, Qisheng [1 ,2 ]
Liang, Tiangang [1 ,2 ]
机构
[1] Lanzhou Univ, State Key Lab Herbage Improvement & Grassland Agro, Key Lab Grassland Livestock Ind Innovat, Engn Res Ctr Grassland Ind,Minist Educ, Lanzhou 730000, Peoples R China
[2] Lanzhou Univ, Coll Pastoral Agr Sci & Technol, Lanzhou 730000, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2024年 / 62卷
关键词
Above-ground biomass (AGB); alpine grassland; data fusion; multisource remote sensing; wilting period; NONPHOTOSYNTHETIC VEGETATION BIOMASS; NONNEGATIVE MATRIX FACTORIZATION; LEAF-AREA INDEX; CROP RESIDUE; SOIL; COVER; REFLECTANCE; FIELD; SENSITIVITY; PARAMETERS;
D O I
10.1109/TGRS.2023.3341956
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Accurately estimating of grassland above-ground biomass (AGB) during the wilting period is vital in the dynamic monitoring of vegetation survey, carbon storage research, and grazing livestock supplementation. However, previous studies on grassland AGB during the wilting period have rarely involved the integration of ground-based in situ hyperspectral data and satellite images. In this study, we proposed a multisource remote sensing monitoring approach for grassland AGB based on the differential fusion of satellite-ground spectral data from 139 sample sites collected during the grassland's wilting period (September-November) on the northeastern Tibetan Plateau. First, the in situ hyperspectral data and Sentinel-2 images were differentiated fusion by using the nonnegative matrix factorization (NMF) method. Then, the Sentinel-1 synthetic aperture radar (SAR) images were further integrated to develop the random forest (RF) model for estimating AGB in the grassland's wilting period. The results showed that: 1) the NMF-based differentiated fusion model (R-2 = 0.60 and root mean-square error (RMSE) = 586.56 kg/ha) effectively improved the estimation accuracy of AGB for the grassland wilting period compared with the Sentinel-2 satellite model (R-2 = 0.54 and RMSE = 627.53 kg/ha); 2) the vegetation indices (VIs) derived from short-wave infrared (SWIR) bands are sensitive to variations of grassland AGB during wilting, which have great potential in the estimation of grassland AGB; and 3) the grassland AGB model's performance is only slightly improved by adding Sentinel-1 SAR data and no more significantly positive synergistic effect on the model performance was observed. Overall, this study's proposed satellite-ground collaborative monitoring method integrates the advantages of multisource remote sensing data and is expected to further improve the large-scale and high-accuracy monitoring capability for alpine grassland AGB during the wilting period.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [1] Seasonal evaluation and mapping of aboveground biomass in natural rangelands using Sentinel-1 and Sentinel-2 data
    Rapiya, Monde
    Ramoelo, Abel
    Truter, Wayne
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2023, 195 (12)
  • [2] Seasonal evaluation and mapping of aboveground biomass in natural rangelands using Sentinel-1 and Sentinel-2 data
    Monde Rapiya
    Abel Ramoelo
    Wayne Truter
    Environmental Monitoring and Assessment, 2023, 195
  • [3] Estimating vegetation aboveground biomass in Yellow River Delta coastal wetlands using Sentinel-1, Sentinel-2 and Landsat-8 imagery
    Xu, Yiming
    Qin, Yunmeng
    Li, Bin
    Li, Jiahan
    ECOLOGICAL INFORMATICS, 2025, 87
  • [4] Seasonal monitoring of biochemical variables in natural rangelands using Sentinel-1 and Sentinel-2 data
    Rapiya, Monde
    Ramoelo, Abel
    Truter, Wayne
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2024, 45 (14) : 4737 - 4763
  • [5] Estimation of the Grassland Aboveground Biomass of the Inner Mongolia Plateau Using the Simulated Spectra of Sentinel-2 Images
    Pang, Haiyang
    Zhang, Aiwu
    Kang, Xiaoyan
    He, Nianpeng
    Dong, Gang
    REMOTE SENSING, 2020, 12 (24) : 1 - 22
  • [6] Estimating Aboveground Biomass in Dense Hyrcanian Forests by the Use of Sentinel-2 Data
    Moradi, Fardin
    Darvishsefat, Ali Asghar
    Pourrahmati, Manizheh Rajab
    Deljouei, Azade
    Borz, Stelian Alexandru
    FORESTS, 2022, 13 (01):
  • [7] Data integration of Sentinel-1 and Sentinel-2 for evaluating vegetation biomass and water status
    Pilia, S.
    Fontanelli, G.
    Santurri, L.
    Ramat, G.
    Baroni, F.
    Santi, E.
    Lapini, A.
    Pettinato, S.
    Paloscia, S.
    PROCEEDINGS OF 2023 IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR AGRICULTURE AND FORESTRY, METROAGRIFOR, 2023, : 694 - 698
  • [8] AGB estimation using Sentinel-2 and Sentinel-1 datasets
    Qasim, Mohammad
    Csaplovics, Elmar
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2024, 196 (03)
  • [9] Aboveground biomass of salt-marsh vegetation in coastal wetlands: Sample expansion of in situ hyperspectral and Sentinel-2 data using a generative adversarial network
    Chen, Chen
    Ma, Yi
    Ren, Guangbo
    Wang, Jianbu
    REMOTE SENSING OF ENVIRONMENT, 2022, 270
  • [10] Application of Sentinel-1 and Sentinel-2 data to conduct reconnaissance analyses
    Jenerowicz, Agnieszka
    Orych, Agata
    Siok, Katarzyna
    Smiarowski, Michal
    ELECTRO-OPTICAL REMOTE SENSING XIII, 2019, 11160