Eigenvalues of one-dimensional Hamiltonian operators with an eigenparameter in the boundary condition

被引:2
作者
Li, Kun [1 ]
Zheng, Jiajia [1 ]
Cai, Jinming [1 ]
Zheng, Zhaowen [2 ]
机构
[1] Qufu Normal Univ, Sch Math Sci, Qufu 273100, Peoples R China
[2] Guangdong Polytech Normal Univ, Coll Math & Syst Sci, Guangzhou, Peoples R China
基金
中国博士后科学基金;
关键词
STURM-LIOUVILLE PROBLEMS; SPECTRAL PARAMETER; DIRAC SYSTEM; DEPENDENCE;
D O I
10.1063/5.0138229
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, one-dimensional Hamiltonian operators with spectral parameter-dependent boundary conditions are investigated. First, the eigenvalues of the problem under consideration are transformed into the eigenvalues of an operator in an appropriate Hilbert space. Then, some properties of the eigenvalues are given. Moreover, the continuity and differentiability of the eigenvalues of the problem are obtained, and the differential expressions of the eigenvalues concerning each parameter are also given. Finally, Green's function is also involved.
引用
收藏
页数:15
相关论文
共 38 条
[1]   Spectral problems for the dirac system with spectral parameter in local boundary conditions [J].
Agranovich, MS .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2001, 35 (03) :161-175
[2]  
Allahverdiev B. P., 2019, Electron. J. Differ. Equ, V2, P1
[3]   A Nonself-Adjoint 1D Singular Hamiltonian System with an Eigenparameter in the Boundary Condition [J].
Allahverdiev, Bilender P. .
POTENTIAL ANALYSIS, 2013, 38 (04) :1031-1045
[4]   Eigenparameter dependent Sturm-Liouville problems in boundary conditions with transmission conditions [J].
Allahverdiev, Bilender P. ;
Bairamov, Elgiz ;
Ugurlu, Ekin .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 401 (01) :388-396
[5]   Extensions, dilations and functional models of dirac operators [J].
Allahverdiev, BP .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2005, 51 (04) :459-475
[6]   Class of Sturm-Liouville Problems with Eigenparameter Dependent Transmission Conditions [J].
Aydemir, Kadriye ;
Mukhtarov, Oktay Sh. .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2017, 38 (10) :1260-1275
[7]   Algorithm 810: The SLEIGN2 Sturm-Liouville code [J].
Bailey, PB ;
Everitt, WN ;
Zettl, A .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2001, 27 (02) :143-192
[9]   Sturm-Liouville problems with boundary conditions rationally dependent on the eigenparameter, II [J].
Binding, PA ;
Browne, PJ ;
Watson, BA .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 148 (01) :147-168
[10]   An inverse spectral problem for integro-differential Dirac operators with general convolution kernels [J].
Bondarenko, Natalia ;
Buterin, Sergey .
APPLICABLE ANALYSIS, 2020, 99 (04) :700-716