Local automorphisms of complex solvable Lie algebras of maximal rank

被引:2
作者
Kudaybergenov, Karimbergen [1 ,2 ,6 ,7 ]
Kurbanbaev, Tuuelbay [3 ,4 ]
Omirov, Bakhrom [1 ,5 ]
机构
[1] Harbin Inst Technol, Inst Adv Study Math, Harbin, Peoples R China
[2] North Caucasus Ctr Math Res, Vladikavkaz, Russia
[3] Karakalpak State Univ, Nukus, Uzbekistan
[4] Uzbek Acad Sci, V I Romanovskiy Inst Math, Tashkent, Uzbekistan
[5] Cent Asian Univ, Tashkent, Uzbekistan
[6] Harbin Inst Technol, Inst Adv Study Math, Harbin 150001, Peoples R China
[7] North Caucasus Ctr Math Res, Vladikavkaz 362027, Russia
关键词
Solvable Lie algebra of maximal rank; nilradical; torus; root system; automorphism; local automorphism;
D O I
10.1080/03081087.2023.2241610
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to the descriptions of automorphisms and local automorphisms on complex solvable Lie algebras of maximal rank. First, it is established that any automorphism on a solvable Lie algebra of maximal rank can be represented as a product (composition) of inner, diagonal and graph automorphisms. We apply the description of automorphism to the specification of automorphisms on solvable Lie algebras of maximal rank with abelian nilradical, and to the description of automorphisms of standard Borel subalgebras of complex simple Lie algebras. Based on the representation of an automorphism, it is proved that all local automorphisms on a solvable Lie algebra of maximal rank are global automorphisms. We also present two examples of solvable Lie algebras which are not of maximal rank and have different behaviours of local automorphisms. Namely, the first algebra does not admit pure local automorphisms, while the second algebra admits a local automorphism which is not an automorphism.
引用
收藏
页码:2197 / 2220
页数:24
相关论文
共 18 条
[1]   Local Automorphisms on Finite-Dimensional Lie and Leibniz Algebras [J].
Ayupov, Shavkat ;
Kudaybergenov, Karimbergen .
ALGEBRA, COMPLEX ANALYSIS, AND PLURIPOTENTIAL THEORY, 2018, 264 :31-44
[2]   Local and 2-Local Derivations and Automorphisms on Simple Leibniz Algebras [J].
Ayupov, Shavkat ;
Kudaybergenov, Karimbergen ;
Omirov, Bakhrom .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (03) :2199-2234
[3]   ON SEMI-SIMPLE AUTOMORPHISMS OF LIE ALGEBRAS [J].
BOREL, A ;
MOSTOW, GD .
ANNALS OF MATHEMATICS, 1955, 61 (03) :389-405
[4]   MAPPINGS WHICH PRESERVE IDEMPOTENTS, LOCAL AUTOMORPHISMS, AND LOCAL DERIVATIONS [J].
BRESAR, M ;
SEMRL, P .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1993, 45 (03) :483-496
[5]  
Bresar M, 2007, P ROY SOC EDINB A, V137, P9
[6]   Local and 2-local automorphisms of simple generalized Witt algebras [J].
Chen, Yang ;
Zhao, Kaiming ;
Zhao, Yueqiang .
ARKIV FOR MATEMATIK, 2021, 59 (01) :1-10
[7]   Local automorphisms of finite dimensional simple Lie algebras [J].
Costantini, Mauro .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 562 :123-134
[8]  
Elduque A., 2013, Mathematical Surveys and Monographs, V189
[9]   Local automorphisms of nilpotent algebras of matrices of small orders [J].
Elisova A.P. .
Russian Mathematics, 2013, 57 (2) :34-41
[10]  
Hall B. C., 2015, Lie Groups, Lie Algebras, and Representations