Photothermal Conversion and Thermal Management of Magnetic Plasmonic Fe3O4@Au Nanofluids

被引:18
作者
Wang, Ruipeng [1 ]
Xing, Linzhuang [1 ]
Ha, Yuan [1 ]
Zhong, Peng [1 ]
Wang, Zhenni [1 ]
Cao, Ye [1 ]
Li, Zhimin [1 ]
机构
[1] Xidian Univ, Sch Adv Mat & Nanotechnol, Xian 710071, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
direct absorption solar collectors; Fe3O4@Au; nanofluids; photothermal conversion efficiency; thermal management; PHASE-CHANGE MATERIAL; ENERGY-CONVERSION; OPTICAL-PROPERTIES; SOLAR; PERFORMANCE; NANOPARTICLES; EFFICIENCY; ENHANCEMENT; COLLECTION; EXERGY;
D O I
10.1002/solr.202300269
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
As a sustainable and widely available source of clean energy, solar energy has great potential for solving the aforementioned issues. Nanofluids (NFs)-based direct absorption solar collectors can convert solar energy into thermal energy, which has been widely applied in energy-thermal conversion and wastewater purification. However, the low photothermal modulation efficiency of NFs limits the industrialization of solar collectors. Herein, the Fe3O4@Au composite structure is constructed using coprecipitation method. The effect of different parameters, such as Au loading, concentration of NFs, external magnetic field, and flow rate on the optical and photothermal properties of the Fe3O4@Au NFs and Fe3O4 NFs are systematically studied. The results reveal that the solar energy-weighted absorption fraction of Fe3O4@Au reaches 97.54% with a low concentration of 0.0667 vol%. Besides, the heat distribution can be controlled using an external magnetic field owing to the magnetic properties of Fe3O4 in water evaporation devices. The evaporation rate of Fe3O4 evaporator and Fe3O4@Au evaporator is 1.8 and 2.3 kg m(-2) h(-1), respectively, confirming their excellent and stable solar energy harvesting ability. The prepared Fe3O4@Au NFs are a promising approach in efficient photothermal conversion and thermal management in solar energy harvesting.
引用
收藏
页数:11
相关论文
共 47 条
[1]  
[Anonymous], 2012, Am. Soc. Test. Mater, P1, DOI [10.1520/G0173-03R12, DOI 10.1520/G0173-03R12]
[2]   Optimization of silver/water-based porous wavy direct absorption solar collector [J].
Bozorgi, Mehran ;
Ghasemi, Kasra ;
Mohaghegh, Mohammad Reza ;
Tasnim, Syeda Humaira ;
Mahmud, Shohel .
RENEWABLE ENERGY, 2023, 202 :1387-1401
[3]   Stably dispersed high-temperature Fe3O4/silicone-oil nanofluids for direct solar thermal energy harvesting [J].
Chen, Yingying ;
Quan, Xiaojun ;
Wang, Zhongyong ;
Lee, Chiahsun ;
Wang, ZiZhao ;
Tao, Peng ;
Song, Chengyi ;
Wu, Jianbo ;
Shang, Wen ;
Deng, Tao .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (44) :17503-17511
[4]   Synthesis of orientedly bioconjugated core/shell Fe3O4@Au magnetic nanoparticles for cell separation [J].
Cui, Yi-Ran ;
Hong, Chao ;
Zhou, Ying-Lin ;
Li, Yue ;
Gao, Xiao-Ming ;
Zhang, Xin-Xiang .
TALANTA, 2011, 85 (03) :1246-1252
[5]   Does greater leaf-level photosynthesis explain the larger solar energy conversion efficiency of Miscanthus relative to switchgrass? [J].
Dohleman, F. G. ;
Heaton, E. A. ;
Leakey, A. D. B. ;
Long, S. P. .
PLANT CELL AND ENVIRONMENT, 2009, 32 (11) :1525-1537
[6]   Investigation of a novel surface inlay composite nanoparticle based on local surface plasmon resonance-enhanced solar absorption [J].
Gong, Han ;
Cui, Zheng ;
Shao, Wei ;
Ma, Xiaoteng .
RENEWABLE ENERGY, 2022, 197 :452-461
[7]   A numerical and experimental investigation on the performance of a low-flux direct absorption solar collector (DASC) using graphite, magnetite and silver nanofluids [J].
Gorji, Tahereh B. ;
Ranjbar, A. A. .
SOLAR ENERGY, 2016, 135 :493-505
[8]   Comparison of thermal performance between a surface and a volumetric absorption solar collector using water and Fe3O4 nanofluid [J].
Ham, Jeonggyun ;
Shin, Yunchan ;
Cho, Honghyun .
ENERGY, 2022, 239
[9]   Experimental investigation on photothermal properties of nanofluids for direct absorption solar thermal energy systems [J].
He, Qinbo ;
Wang, Shuangfeng ;
Zeng, Shequan ;
Zheng, Zhaozhi .
ENERGY CONVERSION AND MANAGEMENT, 2013, 73 :150-157
[10]  
Howell J.R., 2020, Thermal radiation heat transfer