Multifunctional solvent molecule design enables high-voltage Li-ion batteries

被引:99
作者
Zhang, Junbo [1 ,2 ]
Zhang, Haikuo [1 ]
Weng, Suting [3 ]
Li, Ruhong [1 ]
Lu, Di [1 ]
Deng, Tao [4 ]
Zhang, Shuoqing [1 ]
Lv, Ling [1 ]
Qi, Jiacheng [1 ]
Xiao, Xuezhang [1 ]
Fan, Liwu [5 ]
Geng, Shujiang [2 ]
Wang, Fuhui [2 ]
Chen, Lixin [1 ,6 ]
Noked, Malachi [7 ]
Wang, Xuefeng [3 ,8 ]
Fan, Xiulin [1 ]
机构
[1] Zhejiang Univ, Sch Mat Sci & Engn, State Key Lab Silicon Mat, Hangzhou 310027, Peoples R China
[2] Northeastern Univ, Shenyang Natl Lab Mat Sci, Shenyang 110819, Peoples R China
[3] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[4] Univ Maryland, Dept Chem & Biomol Engn, College Pk, MD USA
[5] Zhejiang Univ, Sch Energy Engn, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Peoples R China
[6] Key Lab Adv Mat & Applicat Batteries Zhejiang Prov, Hangzhou 310013, Peoples R China
[7] Bar Ilan Univ, Dept Chem, Ramat Gan, Israel
[8] Tianmu Lake Inst Adv Energy Storage Technol Co Ltd, Liyang 213300, Jiangsu, Peoples R China
基金
中国国家自然科学基金; 以色列科学基金会;
关键词
FLUORINATED ELECTROLYTES; 1,3-PROPANE SULTONE; LITHIUM; CARBONATE; DISSOLUTION; TRANSITION; INTERFACES; STABILITY; SULFONE; INTERPHASES;
D O I
10.1038/s41467-023-37999-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The parasitic reactions at the electrolyte/electrode interfaces inhibit the increase of the charging cut-off voltage and the improvement of energy density. Herein, the authors design multifunctional solvent molecules and propose a practical design principle to stabilize the electrolyte/electrode interfaces for high-voltage Li ion batteries. Elevating the charging cut-off voltage is one of the efficient approaches to boost the energy density of Li-ion batteries (LIBs). However, this method is limited by the occurrence of severe parasitic reactions at the electrolyte/electrode interfaces. Herein, to address this issue, we design a non-flammable fluorinated sulfonate electrolyte by multifunctional solvent molecule design, which enables the formation of an inorganic-rich cathode electrolyte interphase (CEI) on high-voltage cathodes and a hybrid organic/inorganic solid electrolyte interphase (SEI) on the graphite anode. The electrolyte, consisting of 1.9 M LiFSI in a 1:2 v/v mixture of 2,2,2-trifluoroethyl trifluoromethanesulfonate and 2,2,2-trifluoroethyl methanesulfonate, endows 4.55 V-charged graphite||LiCoO2 and 4.6 V-charged graphite||NCM811 batteries with capacity retentions of 89% over 5329 cycles and 85% over 2002 cycles, respectively, thus resulting in energy density increases of 33% and 16% compared to those charged to 4.3 V. This work demonstrates a practical strategy for upgrading the commercial LIBs.
引用
收藏
页数:14
相关论文
共 70 条
  • [1] A carbonate-free, sulfone-based electrolyte for high-voltage Li-ion batteries
    Alvarado, Judith
    Schroeder, Marshall A.
    Zhang, Minghao
    Borodin, Oleg
    Gobrogge, Eric
    Olguin, Marco
    Ding, Michael S.
    Gobet, Mallory
    Greenbaum, Steve
    Meng, Ying Shirley
    Xu, Kang
    [J]. MATERIALS TODAY, 2018, 21 (04) : 341 - 353
  • [2] Dipole correction for surface supercell calculations
    Bengtsson, L
    [J]. PHYSICAL REVIEW B, 1999, 59 (19): : 12301 - 12304
  • [3] Oxidative Stability and Initial Decomposition Reactions of Carbonate, Sulfone, and Alkyl Phosphate-Based Electrolytes
    Borodin, Oleg
    Behl, Wishvender
    Jow, T. Richard
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (17) : 8661 - 8682
  • [4] Review-Localized High-Concentration Electrolytes for Lithium Batteries
    Cao, Xia
    Jia, Hao
    Xu, Wu
    Zhang, Ji-Guang
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (01)
  • [5] Monolithic solid-electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization
    Cao, Xia
    Ren, Xiaodi
    Zou, Lianfeng
    Engelhard, Mark H.
    Huang, William
    Wang, Hansen
    Matthews, Bethany E.
    Lee, Hongkyung
    Niu, Chaojiang
    Arey, Bruce W.
    Cui, Yi
    Wang, Chongmin
    Xiao, Jie
    Liu, Jun
    Xu, Wu
    Zhang, Ji-Guang
    [J]. NATURE ENERGY, 2019, 4 (09) : 796 - 805
  • [6] Electrical Energy Storage for the Grid: A Battery of Choices
    Dunn, Bruce
    Kamath, Haresh
    Tarascon, Jean-Marie
    [J]. SCIENCE, 2011, 334 (6058) : 928 - 935
  • [7] Unraveling transition metal dissolution of Li1.04Ni1/3Co1/3Mn1/3O2 (NCM 111) in lithium ion full cells by using the total reflection X-ray fluorescence technique
    Evertz, Marco
    Horsthemke, Fabian
    Kasnatscheew, Johannes
    Boerner, Markus
    Winter, Martin
    Nowak, Sascha
    [J]. JOURNAL OF POWER SOURCES, 2016, 329 : 364 - 371
  • [8] High-voltage liquid electrolytes for Li batteries: progress and perspectives
    Fan, Xiulin
    Wang, Chunsheng
    [J]. CHEMICAL SOCIETY REVIEWS, 2021, 50 (18) : 10486 - 10566
  • [9] All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents
    Fan, Xiulin
    Ji, Xiao
    Chen, Long
    Chen, Ji
    Deng, Tao
    Han, Fudong
    Yue, Jie
    Piao, Nan
    Wang, Ruixing
    Zhou, Xiuquan
    Xiao, Xuezhang
    Chen, Lixin
    Wang, Chunsheng
    [J]. NATURE ENERGY, 2019, 4 (10) : 882 - 890
  • [10] Evaluating the behaviour of deep eutectic solvent electrolytes on 2D Ca2C MXene anode for the Li-ion batteries
    Ghaed-Sharaf, Tahereh
    Omidvar, Akbar
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (22) : 13988 - 13998