On Solutions of Fractional Integrodifferential Systems Involving ψ-Caputo Derivative and ψ-Riemann-Liouville Fractional Integral

被引:1
|
作者
Boulares, Hamid [1 ]
Moumen, Abdelkader [2 ]
Fernane, Khaireddine [1 ]
Alzabut, Jehad [3 ,4 ]
Saber, Hicham [2 ]
Alraqad, Tariq [2 ]
Benaissa, Mhamed [5 ]
机构
[1] Univ 8 May 1945 Guelma, Fac MISM, Dept Math, Lab Anal & Control Differential Equat ACED, POB 401, Guelma 24000, Algeria
[2] Univ Hail, Fac Sci, Dept Math, Hail 55425, Saudi Arabia
[3] Prince Sultan Univ, Dept Math & Sci, Riyadh 11586, Saudi Arabia
[4] OSTIM Tech Univ, Dept Ind Engn, TR-06374 Ankara, Turkiye
[5] Univ Hail, Coll Engn, Chem Engn Dept, Hail 81441, Saudi Arabia
关键词
psi-Caputo derivative; psi-Riemann-Liouville fractional integral; monotone sequences; upper and lower solutions; Arzela-Ascoli theorem; COUPLED SYSTEM; DIFFERENTIAL-EQUATIONS; ORDER; EXISTENCE; UNIQUENESS; OPERATOR; SCHEME;
D O I
10.3390/math11061465
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate a new class of nonlinear fractional integrodifferential systems that includes the ?-Riemann-Liouville fractional integral term. Using the technique of upper and lower solutions, the solvability of the system is examined. We add two examples to demonstrate and validate the main result. The main results highlight crucial contributions to the general theory of fractional differential equations.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] A Multiplicity Results for a Singular Problem Involving a Riemann-Liouville Fractional Derivative
    Ghanmi, A.
    Kratou, M.
    Saoudi, K.
    FILOMAT, 2018, 32 (02) : 653 - 669
  • [32] Dissipative fractional standard maps: Riemann-Liouville and Caputo
    Mendez-Bermudez, J. A.
    Aguilar-Sanchez, R.
    CHAOS, 2025, 35 (02)
  • [33] Integral-Type Fractional Equations with a Proportional Riemann-Liouville Derivative
    Mlaiki, Nabil
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [34] New integral inequalities involving generalized Riemann-Liouville fractional operators
    Delgado, Juan Gabriel Galeano
    Valdes, Juan E. Napoles
    Reyes, Edgardo Perez
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2023, 68 (03): : 481 - 487
  • [35] A Fractional Boundary Value Problem with φ-Riemann-Liouville Fractional Derivative
    Ji, Dehong
    Yang, Yitao
    IAENG International Journal of Applied Mathematics, 2020, 50 (04) : 1 - 5
  • [36] Existence Results for Sequential Riemann-Liouville and Caputo Fractional Differential Inclusions with Generalized Fractional Integral Conditions
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    Ahmad, Bashir
    Alsaedi, Ahmed
    MATHEMATICS, 2020, 8 (06)
  • [37] Existence of Solutions for Fractional Differential Equations Involving Two Riemann-Liouville Fractional Orders
    Mohamed Houas
    Analysis in Theory and Applications, 2018, 34 (03) : 253 - 274
  • [38] Extension of the fractional derivative operator of the Riemann-Liouville
    Baleanu, Dumitru
    Agarwal, Praveen
    Parmar, Rakesh K.
    Alqurashi, Maysaa M.
    Salahshour, Soheil
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (06): : 2914 - 2924
  • [39] The Riemann-Liouville fractional derivative for Ambartsumian equation
    El-Zahar, E. R.
    Alotaibi, A. M.
    Ebaid, A.
    Aljohani, A. F.
    Gomez Aguilar, J. F.
    RESULTS IN PHYSICS, 2020, 19
  • [40] THE UNIFIED RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE FORMULAE
    Soni, R. C.
    Singh, Deepika
    TAMKANG JOURNAL OF MATHEMATICS, 2005, 36 (03): : 231 - 236