On Solutions of Fractional Integrodifferential Systems Involving ψ-Caputo Derivative and ψ-Riemann-Liouville Fractional Integral

被引:1
|
作者
Boulares, Hamid [1 ]
Moumen, Abdelkader [2 ]
Fernane, Khaireddine [1 ]
Alzabut, Jehad [3 ,4 ]
Saber, Hicham [2 ]
Alraqad, Tariq [2 ]
Benaissa, Mhamed [5 ]
机构
[1] Univ 8 May 1945 Guelma, Fac MISM, Dept Math, Lab Anal & Control Differential Equat ACED, POB 401, Guelma 24000, Algeria
[2] Univ Hail, Fac Sci, Dept Math, Hail 55425, Saudi Arabia
[3] Prince Sultan Univ, Dept Math & Sci, Riyadh 11586, Saudi Arabia
[4] OSTIM Tech Univ, Dept Ind Engn, TR-06374 Ankara, Turkiye
[5] Univ Hail, Coll Engn, Chem Engn Dept, Hail 81441, Saudi Arabia
关键词
psi-Caputo derivative; psi-Riemann-Liouville fractional integral; monotone sequences; upper and lower solutions; Arzela-Ascoli theorem; COUPLED SYSTEM; DIFFERENTIAL-EQUATIONS; ORDER; EXISTENCE; UNIQUENESS; OPERATOR; SCHEME;
D O I
10.3390/math11061465
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate a new class of nonlinear fractional integrodifferential systems that includes the ?-Riemann-Liouville fractional integral term. Using the technique of upper and lower solutions, the solvability of the system is examined. We add two examples to demonstrate and validate the main result. The main results highlight crucial contributions to the general theory of fractional differential equations.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Ground state solutions for the fractional impulsive differential system with ψ-Caputo fractional derivative and ψ-Riemann-Liouville fractional integral
    Li, Dongping
    Li, Yankai
    Feng, Xiaozhou
    Li, Changtong
    Wang, Yuzhen
    Gao, Jie
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (11) : 8434 - 8448
  • [2] Solutions to Riemann-Liouville fractional integrodifferential equations via fractional resolvents
    Ji, Shaochun
    Yang, Dandan
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
  • [3] Nonlinear Caputo Fractional Derivative with Nonlocal Riemann-Liouville Fractional Integral Condition Via Fixed Point Theorems
    Borisut, Piyachat
    Kumam, Poom
    Ahmed, Idris
    Sitthithakerngkiet, Kanokwan
    SYMMETRY-BASEL, 2019, 11 (06):
  • [4] Positive solutions for fractional differential systems with nonlocal Riemann-Liouville fractional integral boundary conditions
    Neamprem, Khomsan
    Muensawat, Thanadon
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    POSITIVITY, 2017, 21 (03) : 825 - 845
  • [5] Initial value problems for fractional differential equations involving Riemann-Liouville sequential fractional derivative
    Wei, Zhongli
    Li, Qingdong
    Che, Junling
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 367 (01) : 260 - 272
  • [6] Nonlinear sequential Riemann-Liouville and Caputo fractional differential equations with generalized fractional integral conditions
    Promsakon, Chanon
    Phuangthong, Nawapol
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [7] Nontrivial solutions for an integral boundary value problem involving Riemann-Liouville fractional derivatives
    Fu, Zhengqing
    Bai, Shikun
    O'Regan, Donal
    Xu, Jiafa
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
  • [8] Positive Solutions for a System of Fractional Integral Boundary Value Problems of Riemann-Liouville Type Involving Semipositone Nonlinearities
    Ding, Youzheng
    Xu, Jiafa
    Fu, Zhengqing
    MATHEMATICS, 2019, 7 (10)
  • [9] Solvability of Anti-periodic BVPs for Impulsive Fractional Differential Systems Involving Caputo and Riemann-Liouville Fractional Derivatives
    Liu, Yuji
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2018, 19 (02) : 125 - 152
  • [10] The Solutions of Some Riemann-Liouville Fractional Integral Equations
    Kaewnimit, Karuna
    Wannalookkhee, Fongchan
    Nonlaopon, Kamsing
    Orankitjaroen, Somsak
    FRACTAL AND FRACTIONAL, 2021, 5 (04)