Predicting neurological outcome after cardiac arrest by combining computational parameters extracted from standard and deviant responses from auditory evoked potentials

被引:0
作者
Floyrac, Aymeric [1 ]
Doumergue, Adrien [1 ]
Legriel, Stephane [2 ,3 ]
Deye, Nicolas [4 ,5 ]
Megarbane, Bruno [4 ,6 ]
Richard, Alexandra [7 ]
Meppiel, Elodie [7 ]
Masmoudi, Sana [7 ]
Lozeron, Pierre [7 ,8 ]
Vicaut, Eric [9 ]
Kubis, Nathalie [7 ,8 ]
Holcman, David [1 ]
机构
[1] Ecole Normale Super, Appl Math & Computat Biol, PSL, Paris, France
[2] CH Versailles, Med Surg Intens Care Dept, Le Chesnay, France
[3] Univ Paris Saclay, PsyDev Team, CESP, INSERM, Villejuif, France
[4] Lariboisiere Hosp, APHP, Dept Med & Toxicol Crit Care, Paris, France
[5] INSERM U942, Paris, France
[6] Univ Paris Cite, INSERM UMRS 1144, Paris, France
[7] Hop Lariboisiere, APHP, Serv Physiol Clin Explorat Fonct, Paris, France
[8] Univ Paris Cite, Paris, France
[9] Hop St Louis, APHP, Unite Rech Clin St Louis Lariboisiere, Paris, France
关键词
coma; electroencephalography; automatic classification algorithm; machine learning; neurological prognosis; EUROPEAN RESUSCITATION COUNCIL; MISMATCH NEGATIVITY; COMATOSE SURVIVORS; NEURAL RESPONSES; EEG-REACTIVITY; CARE; DISCRIMINATION; CARDIOPULMONARY; PROGNOSTICATION; REPLICABILITY;
D O I
10.3389/fnins.2023.988394
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
BackgroundDespite multimodal assessment (clinical examination, biology, brain MRI, electroencephalography, somatosensory evoked potentials, mismatch negativity at auditory evoked potentials), coma prognostic evaluation remains challenging. MethodsWe present here a method to predict the return to consciousness and good neurological outcome based on classification of auditory evoked potentials obtained during an oddball paradigm. Data from event-related potentials (ERPs) were recorded noninvasively using four surface electroencephalography (EEG) electrodes in a cohort of 29 post-cardiac arrest comatose patients (between day 3 and day 6 following admission). We extracted retrospectively several EEG features (standard deviation and similarity for standard auditory stimulations and number of extrema and oscillations for deviant auditory stimulations) from the time responses in a window of few hundreds of milliseconds. The responses to the standard and the deviant auditory stimulations were thus considered independently. By combining these features, based on machine learning, we built a two-dimensional map to evaluate possible group clustering. ResultsAnalysis in two-dimensions of the present data revealed two separated clusters of patients with good versus bad neurological outcome. When favoring the highest specificity of our mathematical algorithms (0.91), we found a sensitivity of 0.83 and an accuracy of 0.90, maintained when calculation was performed using data from only one central electrode. Using Gaussian, K-neighborhood and SVM classifiers, we could predict the neurological outcome of post-anoxic comatose patients, the validity of the method being tested by a cross-validation procedure. Moreover, the same results were obtained with one single electrode (Cz). Conclusionstatistics of standard and deviant responses considered separately provide complementary and confirmatory predictions of the outcome of anoxic comatose patients, better assessed when combining these features on a two-dimensional statistical map. The benefit of this method compared to classical EEG and ERP predictors should be tested in a large prospective cohort. If validated, this method could provide an alternative tool to intensivists, to better evaluate neurological outcome and improve patient management, without neurophysiologist assistance.
引用
收藏
页数:13
相关论文
共 46 条
[1]   EEG reactivity testing for prediction of good outcome in patients after cardiac arrest [J].
Admiraal, Marjolein M. ;
Horn, Janneke ;
Hofmeijer, Jeannette ;
Hoedemaekers, Cornelia W. E. ;
van Kaam, C. R. ;
Keijzer, Hanneke M. ;
van Putten, Michel J. A. M. ;
Schultz, Marcus J. ;
van Rootselaar, Anne-Fleur .
NEUROLOGY, 2020, 95 (06) :E653-E661
[2]  
AIZERMAN MA, 1965, AUTOMAT REM CONTR+, V25, P821
[3]   Recommendations for the use of electroencephalography and evoked potentials in comatose patients [J].
Andre-Obadia, Nathalie ;
Zyss, Julie ;
Gavaret, Martine ;
Lefaucheur, Jean -Pascal ;
Azabou, Eric ;
Boulogne, Sebastien ;
Guerit, Jean-Michel ;
McGonigal, Aileen ;
Merle, Philippe ;
Mutschler, Veronique ;
Naccache, Lionel ;
Sabourdy, Cecile ;
Trebuchon, Agnes ;
Tyvaert, Louise ;
Vercueil, Laurent ;
Rohaut, Benjamin ;
Delval, Arnaud .
NEUROPHYSIOLOGIE CLINIQUE-CLINICAL NEUROPHYSIOLOGY, 2018, 48 (03) :143-169
[4]   Mismatch negativity to predict subsequent awakening in deeply sedated critically ill patients [J].
Azabou, E. ;
Rohaut, B. ;
Porcher, R. ;
Heming, N. ;
Kandelman, S. ;
Allary, J. ;
Moneger, G. ;
Faugeras, F. ;
Sitt, J. D. ;
Annane, D. ;
Lofaso, F. ;
Chretien, F. ;
Mantz, J. ;
Naccache, L. ;
Sharshar, T. .
BRITISH JOURNAL OF ANAESTHESIA, 2018, 121 (06) :1290-1297
[5]   Early prognosis in coma after cardiac arrest: A prospective clinical, electrophysiological, and biochemical study of 60 patients [J].
Bassetti, C ;
Bomio, F ;
Mathis, J ;
Hess, CW .
JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY, 1996, 61 (06) :610-615
[6]   Quantitative analysis of early-stage EEG reactivity predicts awakening and recovery of consciousness in patients with severe brain injury [J].
Bouchereau, Eleonore ;
Marchi, Angela ;
Hermann, Bertrand ;
Pruvost-Robieux, Estelle ;
Guinard, Eleonore ;
Legouy, Camille ;
Schimpf, Caroline ;
Mazeraud, Aurelien ;
Baron, Jean-Claud ;
Ramdani, Celine ;
Gavaret, Martin ;
Sharshar, Tarek ;
Turc, Guillaum .
BRITISH JOURNAL OF ANAESTHESIA, 2023, 130 (02) :E225-E232
[7]  
Buitinck L., 2013, PREPRINT
[8]   A national analysis of the relationship between hospital factors and post-cardiac arrest mortality [J].
Carr, Brendan G. ;
Goyal, Munish ;
Band, Roger A. ;
Gaieski, David F. ;
Abella, Benjamin S. ;
Merchant, Raina M. ;
Branas, Charles C. ;
Becker, Lance B. ;
Neumar, Robert W. .
INTENSIVE CARE MEDICINE, 2009, 35 (03) :505-511
[9]  
Chausson N, 2008, REV NEUROL-FRANCE, V164, pF34
[10]  
Cherkassky V., 1998, LEARNING DATA CONCEP