Post quantum Ostrowski-type inequalities for coordinated convex functions

被引:0
作者
Wannalookkhee, Fongchan [1 ]
Nonlaopon, Kamsing [1 ]
Ntouyas, Sortiris K. [2 ,3 ]
Budak, Huseyin [4 ]
机构
[1] Khon Kaen Univ, Dept Math, Khon Kaen, Thailand
[2] Univ Ioannina, Dept Math, Ioannina, Greece
[3] King Abdulaziz Univ, Fac Sci, Dept Math, Nonlinear Anal & Appl Math NAAM Res Grp, Jeddah, Saudi Arabia
[4] Duzce Univ, Fac Sci & Arts, Dept Math, Duzce, Turkey
关键词
convex function; coordinated convex function; Ostrowski inequality; (p; q)-derivative; q)-integral; q)-calculus; HADAMARD INEQUALITY; ANALOGS; (P;
D O I
10.1002/mma.8748
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we give a new notion of (p, q) derivatives for continuous functions on coordinates. We also derive post quantum Ostrowski-type inequalities for coordinated convex functions. Our significant results are considered as the generalizations of other results that appeared in the literature.
引用
收藏
页码:4159 / 4183
页数:25
相关论文
共 42 条
[1]   On nonlocal boundary value problems of nonlinear q-difference equations [J].
Ahmad, Bashir ;
Nieto, Juan J. .
ADVANCES IN DIFFERENCE EQUATIONS, 2012, :1-10
[2]  
Ahmad B, 2011, ELECTRON J DIFFER EQ
[3]  
Ali M.A., SOME NEW TRAPEZOIDAL
[4]  
Ali Rostom, 2020, Asian Journal of Medical and Biological Research, V6, P1, DOI 10.3329/ajmbr.v6i1.46472
[5]  
Alomari M., 2010, RGMIA, V13, P2
[6]  
Alomari M., 2018, Turk. J. Sci, V3, P32
[7]  
Annyby HM., 2012, FRACTIONAL CALCULUS
[8]  
Aral A., 2013, Applications of q-Calculus in Operator Theory
[9]   On Fejer Type Inequalities via (p,q)-Calculus [J].
Arunrat, Nuttapong ;
Nakprasit, Keaitsuda Maneeruk ;
Nonlaopon, Kamsing ;
Tariboon, Jessada ;
Ntouyas, Sotiris K. .
SYMMETRY-BASEL, 2021, 13 (06)
[10]   Variational q-calculus [J].
Bangerezako, G .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 289 (02) :650-665