Using normative modeling to assess pharmacological treatment effect on brain state in patients with schizophrenia

被引:2
作者
Lin, Xiao [1 ]
Huo, Yanxi [2 ]
Wang, Qiandong [3 ]
Liu, Guozhong [2 ]
Shi, Jie [4 ,5 ]
Fan, Yong [6 ]
Lu, Lin [1 ]
Jing, Rixing [2 ]
Li, Peng [1 ,7 ,8 ]
机构
[1] Peking Univ, Chinese Acad Med Sci, Natl Clin Res Ctr Mental Disorders, NHC Key Lab Mental Hlth,Hosp 6,Inst Mental Hlth,Re, Beijing 100191, Peoples R China
[2] Beijing Informat Sci & Technol Univ, Sch Instrument Sci & Optoelect Engn, 12 Qinghexiaoyingdong Rd, Beijing 100192, Peoples R China
[3] Beijing Normal Univ, Fac Psychol, Natl Demonstrat Ctr Expt Psychol Educ, Beijing Key Lab Appl Expt Psychol, Beijing 100875, Peoples R China
[4] Peking Univ, Natl Inst Drug Dependence, Beijing 100191, Peoples R China
[5] Peking Univ, Beijing Key Lab Drug Dependence Res, Beijing 100191, Peoples R China
[6] Univ Penn, Perelman Sch Med, Dept Radiol, Philadelphia, PA 19104 USA
[7] Inst Mental Hlth, 51 Huayuanbei Rd, Beijing 100191, Peoples R China
[8] Peking Univ, Hosp 6, 51 Huayuanbei Rd, Beijing 100191, Peoples R China
基金
英国生物技术与生命科学研究理事会; 英国医学研究理事会;
关键词
normative model; schizophrenia; pharmacological treatment; brain network; dynamic functional connectivity; SPECTRUM; SCALE; ABNORMALITIES; DISORDER; EPISODE;
D O I
10.1093/cercor/bhae003
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Quantifying individual differences in neuroimaging metrics is attracting interest in clinical studies with mental disorders. Schizophrenia is diagnosed exclusively based on symptoms, and the biological heterogeneity makes it difficult to accurately assess pharmacological treatment effects on the brain state. Using the Cambridge Centre for Ageing and Neuroscience data set, we built normative models of brain states and mapped the deviations of the brain characteristics of each patient, to test whether deviations were related to symptoms, and further investigated the pharmacological treatment effect on deviation distributions. Specifically, we found that the patients can be divided into 2 groups: the normalized group had a normalization trend and milder symptoms at baseline, and the other group showed a more severe deviation trend. The baseline severity of the depression as well as the overall symptoms could predict the deviation of the static characteristics for the dorsal and ventral attention networks after treatment. In contrast, the positive symptoms could predict the deviations of the dynamic fluctuations for the default mode and dorsal attention networks after treatment. This work evaluates the effect of pharmacological treatment on static and dynamic brain states using an individualized approach, which may assist in understanding the heterogeneity of the illness pathology as well as the treatment response.
引用
收藏
页数:12
相关论文
共 47 条
[21]   Abnormalities in large scale functional networks in unmedicated patients with schizophrenia and effects of risperidone [J].
Kraguljac, Nina Vanessa ;
White, David Matthew ;
Hadley, Jennifer Ann ;
Visscher, Kristina ;
Knight, David ;
Hoef, Lawrence ver ;
Falola, Blessing ;
Lahti, Adrienne Carol .
NEUROIMAGE-CLINICAL, 2016, 10 :146-158
[22]   Understanding the heterogeneity of dynamic functional connectivity patterns in first-episode drug naive depression using normative models [J].
Lin, Xiao ;
Jing, Rixing ;
Chang, Suhua ;
Liu, Lin ;
Wang, Qiandong ;
Zhuo, Chuanjun ;
Shi, Jie ;
Fan, Yong ;
Lu, Lin ;
Li, Peng .
JOURNAL OF AFFECTIVE DISORDERS, 2023, 327 :217-225
[23]   Effects of Chronic Pharmacological Treatment on Functional Brain Network Connectivity in Patients with Schizophrenia [J].
Lin, Xiao ;
Deng, Jiahui ;
Dong, Guangheng ;
Li, Suxia ;
Wu, Ping ;
Sun, Hongqiang ;
Liu, Lin ;
Shi, Jie ;
Fan, Yong ;
Lu, Lin ;
Li, Peng .
PSYCHIATRY RESEARCH, 2021, 295
[24]   Individual deviations from normative models of brain structure in a large cross-sectional schizophrenia cohort [J].
Lv, Jinglei ;
Di Biase, Maria ;
Cash, Robin F. H. ;
Cocchi, Luca ;
Cropley, Vanessa L. ;
Klauser, Paul ;
Tian, Ye ;
Bayer, Johanna ;
Schmaal, Lianne ;
Cetin-Karayumak, Suheyla ;
Rathi, Yogesh ;
Pasternak, Ofer ;
Bousman, Chad ;
Pantelis, Christos ;
Calamante, Fernando ;
Zalesky, Andrew .
MOLECULAR PSYCHIATRY, 2021, 26 (07) :3512-3523
[25]   Conceptualizing mental disorders as deviations from normative functioning [J].
Marquand, Andre F. ;
Kia, Seyed Mostafa ;
Zabihi, Mariam ;
Wolfers, Thomas ;
Buitelaar, Jan K. ;
Beckmann, Christian F. .
MOLECULAR PSYCHIATRY, 2019, 24 (10) :1415-1424
[26]   Understanding Heterogeneity in Clinical Cohorts Using Normative Models: Beyond Case-Control Studies [J].
Marquand, Andre F. ;
Rezek, Iead ;
Buitelaar, Jan ;
Beckmann, Christian F. .
BIOLOGICAL PSYCHIATRY, 2016, 80 (07) :552-561
[27]   Treatment-resistant schizophrenia: Addressing white matter integrity, intracortical glutamate levels, clinical and cognitive profiles between early-and adult-onset patients [J].
Matrone, Marta ;
Kotzalidis, Georgios D. ;
Romano, Andrea ;
Bozzao, Alessandro ;
Cuomo, Ilaria ;
Valente, Francesca ;
Gabaglio, Chiara ;
Lombardozzi, Ginevra ;
Trovini, Giada ;
Amici, Emanuela ;
Perrini, Filippo ;
De Persis, Simone ;
Iasevoli, Felice ;
De Filippis, Sergio ;
de Bartolomeis, Andrea .
PROGRESS IN NEURO-PSYCHOPHARMACOLOGY & BIOLOGICAL PSYCHIATRY, 2022, 114
[28]   Resting-state functional connectivity predictors of treatment response in schizophrenia-A systematic review and meta-analysis [J].
Mehta, Urvakhsh Meherwan ;
Ibrahim, Ferose Azeez ;
Sharma, Manu S. ;
Venkatasubramanian, Ganesan ;
Thirthalli, Jagadisha ;
Bharath, Rose Dawn ;
Bolo, Nicolas R. ;
Gangadhar, Bangalore N. ;
Keshavan, Matcheri S. .
SCHIZOPHRENIA RESEARCH, 2021, 237 :153-165
[29]   Normative model detects abnormal functional connectivity in psychiatric disorders [J].
Oliveira-Saraiva, Duarte ;
Ferreira, Hugo Alexandre .
FRONTIERS IN PSYCHIATRY, 2023, 14
[30]   A symptom combination predicting treatment -resistant schizophrenia ? A strategy for real -world clinical practice [J].
Ortiz, Bruno B. ;
Higuchi, Cinthia H. ;
Noto, Cristiano ;
Joyce, Dan W. ;
Correll, Christoph U. ;
Bressan, Rodrigo A. ;
Gadelha, Ary .
SCHIZOPHRENIA RESEARCH, 2020, 218 :195-200