Using normative modeling to assess pharmacological treatment effect on brain state in patients with schizophrenia

被引:2
作者
Lin, Xiao [1 ]
Huo, Yanxi [2 ]
Wang, Qiandong [3 ]
Liu, Guozhong [2 ]
Shi, Jie [4 ,5 ]
Fan, Yong [6 ]
Lu, Lin [1 ]
Jing, Rixing [2 ]
Li, Peng [1 ,7 ,8 ]
机构
[1] Peking Univ, Chinese Acad Med Sci, Natl Clin Res Ctr Mental Disorders, NHC Key Lab Mental Hlth,Hosp 6,Inst Mental Hlth,Re, Beijing 100191, Peoples R China
[2] Beijing Informat Sci & Technol Univ, Sch Instrument Sci & Optoelect Engn, 12 Qinghexiaoyingdong Rd, Beijing 100192, Peoples R China
[3] Beijing Normal Univ, Fac Psychol, Natl Demonstrat Ctr Expt Psychol Educ, Beijing Key Lab Appl Expt Psychol, Beijing 100875, Peoples R China
[4] Peking Univ, Natl Inst Drug Dependence, Beijing 100191, Peoples R China
[5] Peking Univ, Beijing Key Lab Drug Dependence Res, Beijing 100191, Peoples R China
[6] Univ Penn, Perelman Sch Med, Dept Radiol, Philadelphia, PA 19104 USA
[7] Inst Mental Hlth, 51 Huayuanbei Rd, Beijing 100191, Peoples R China
[8] Peking Univ, Hosp 6, 51 Huayuanbei Rd, Beijing 100191, Peoples R China
基金
英国生物技术与生命科学研究理事会; 英国医学研究理事会;
关键词
normative model; schizophrenia; pharmacological treatment; brain network; dynamic functional connectivity; SPECTRUM; SCALE; ABNORMALITIES; DISORDER; EPISODE;
D O I
10.1093/cercor/bhae003
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Quantifying individual differences in neuroimaging metrics is attracting interest in clinical studies with mental disorders. Schizophrenia is diagnosed exclusively based on symptoms, and the biological heterogeneity makes it difficult to accurately assess pharmacological treatment effects on the brain state. Using the Cambridge Centre for Ageing and Neuroscience data set, we built normative models of brain states and mapped the deviations of the brain characteristics of each patient, to test whether deviations were related to symptoms, and further investigated the pharmacological treatment effect on deviation distributions. Specifically, we found that the patients can be divided into 2 groups: the normalized group had a normalization trend and milder symptoms at baseline, and the other group showed a more severe deviation trend. The baseline severity of the depression as well as the overall symptoms could predict the deviation of the static characteristics for the dorsal and ventral attention networks after treatment. In contrast, the positive symptoms could predict the deviations of the dynamic fluctuations for the default mode and dorsal attention networks after treatment. This work evaluates the effect of pharmacological treatment on static and dynamic brain states using an individualized approach, which may assist in understanding the heterogeneity of the illness pathology as well as the treatment response.
引用
收藏
页数:12
相关论文
共 47 条
[1]   Tracking Whole-Brain Connectivity Dynamics in the Resting State [J].
Allen, Elena A. ;
Damaraju, Eswar ;
Plis, Sergey M. ;
Erhardt, Erik B. ;
Eichele, Tom ;
Calhoun, Vince D. .
CEREBRAL CORTEX, 2014, 24 (03) :663-676
[2]   A normative modelling approach reveals age-atypical cortical thickness in a subgroup of males with autism spectrum disorder [J].
Bethlehem, Richard A. I. ;
Seidlitz, Jakob ;
Romero-Garcia, Rafael ;
Trakoshis, Stavros ;
Dumas, Guillaume ;
Lombardo, Michael V. .
COMMUNICATIONS BIOLOGY, 2020, 3 (01)
[3]   Schizophrenia and depression [J].
Bosanac, Peter ;
Castle, David .
MEDICAL JOURNAL OF AUSTRALIA, 2013, 199 (06) :36-39
[4]   Time-frequency dynamics of resting-state brain connectivity measured with fMRI [J].
Chang, Catie ;
Glover, Gary H. .
NEUROIMAGE, 2010, 50 (01) :81-98
[5]   Neurobiological Commonalities and Distinctions Among Three Major Psychiatric Diagnostic Categories: A Structural MRI Study [J].
Chang, Miao ;
Womer, Fay Y. ;
Edmiston, E. Kale ;
Bai, Chuan ;
Zhou, Qian ;
Jiang, Xiaowei ;
Wei, Shengnan ;
Wei, Yange ;
Ye, Yuting ;
Huang, Haiyan ;
He, Yong ;
Xu, Ke ;
Tang, Yanqing ;
Wang, Fei .
SCHIZOPHRENIA BULLETIN, 2018, 44 (01) :65-74
[6]   Neurodevelopmental model of schizophrenia revisited: similarity in individual deviation and idiosyncrasy from the normative model of whole-brain white matter tracts and shared brain-cognition covariation with ADHD and ASD [J].
Chien, Yi-Ling ;
Lin, Hsiang-Yuan ;
Tung, Yu-Hung ;
Hwang, Tzung-Jeng ;
Chen, Chang-Le ;
Wu, Chi-Shin ;
Shang, Chi-Yung ;
Hwu, Hai-Gwo ;
Tseng, Wen-Yih Isaac ;
Liu, Chih-Min ;
Gau, Susan Shur-Fen .
MOLECULAR PSYCHIATRY, 2022, 27 (08) :3262-3271
[7]  
Colasanti Alessandro, 2010, Clin Pract Epidemiol Ment Health, V6, P72, DOI 10.2174/1745017901006010072
[8]   Opposite effects of dopamine and serotonin on resting-state networks: review and implications for psychiatric disorders [J].
Conio, Benedetta ;
Martino, Matteo ;
Magioncalda, Paola ;
Escelsior, Andrea ;
Inglese, Matilde ;
Amore, Mario ;
Northoff, Georg .
MOLECULAR PSYCHIATRY, 2020, 25 (01) :82-93
[9]   Mapping human brain charts cross-sectionally and longitudinally [J].
Di Biase, Maria A. ;
Tian, Ye Ella ;
Bethlehem, Richard A. I. ;
Seidlitz, Jakob ;
Alexander-Bloch, Aaron. F. ;
Yeo, B. T. Thomas ;
Zalesky, Andrew .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2023, 120 (20)
[10]   Improving the predictive potential of diffusion MRI in schizophrenia using normative models-Towards subject-level classification [J].
Elad, Doron ;
Cetin-Karayumak, Suheyla ;
Zhang, Fan ;
Cho, Kang Ik K. ;
Lyall, Amanda E. ;
Seitz-Holland, Johanna ;
Ben-Ari, Rami ;
Pearlson, Godfrey D. ;
Tamminga, Carol A. ;
Sweeney, John A. ;
Clementz, Brett A. ;
Schretlen, David J. ;
Viher, Petra Verena ;
Stegmayer, Katharina ;
Walther, Sebastian ;
Lee, Jungsun ;
Crow, Tim J. ;
James, Anthony ;
Voineskos, Aristotle N. ;
Buchanan, Robert W. ;
Szeszko, Philip R. ;
Malhotra, Anil K. ;
Keshavan, Matcheri S. ;
Shenton, Martha E. ;
Rathi, Yogesh ;
Bouix, Sylvain ;
Sochen, Nir ;
Kubicki, Marek R. ;
Pasternak, Ofer .
HUMAN BRAIN MAPPING, 2021, 42 (14) :4658-4670