ASTRA: Atomic Surface Transformations for Radiotherapy Quality Assurance

被引:1
作者
Kamath, Amith [1 ]
Poel, Robert [1 ,2 ]
Willmann, Jonas [3 ,4 ]
Ermis, Ekin [2 ]
Andratschke, Nicolaus [3 ]
Reyes, Mauricio [1 ]
机构
[1] Univ Bern, ARTORG Ctr Biomed Engn Res, Bern, Switzerland
[2] Univ Bern, Univ Hosp Bern, Dept Radiat Oncol, Bern, Switzerland
[3] Univ Zurich, Univ Hosp Zurich, Dept Radiat Oncol, Zurich, Switzerland
[4] Paul Scherrer Inst, ETH Domain, Ctr Proton Therapy, Villigen, Switzerland
来源
2023 45TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY, EMBC | 2023年
关键词
Radiotherapy; Treatment Planning; Deep Learning; U-Net; Automated Quality Assurance;
D O I
10.1109/EMBC40787.2023.10341062
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Treatment for glioblastoma, an aggressive brain tumour usually relies on radiotherapy. This involves planning how to achieve the desired radiation dose distribution, which is known as treatment planning. Treatment planning is impacted by human errors, inter-expert variability in segmenting (or outlining) the tumor target and organs-at-risk, and differences in segmentation protocols. Erroneous segmentations translate to erroneous dose distributions, and hence sub-optimal clinical outcomes. Reviewing segmentations is time-intensive, significantly reduces the efficiency of radiation oncology teams, and hence restricts timely radiotherapy interventions to limit tumor growth. Moreover, to date, radiation oncologists review and correct segmentations without information on how potential corrections might affect radiation dose distributions, leading to an ineffective and suboptimal segmentation correction workflow. In this paper, we introduce an automated deep-learning based method: atomic surface transformations for radiotherapy quality assurance (ASTRA), that predicts the potential impact of local segmentation variations on radiotherapy dose predictions, thereby serving as an effective dose-aware sensitivity map of segmentation variations. On a dataset of 100 glioblastoma patients, we show how the proposed approach enables assessment and visualization of areas of organs-atrisk being most susceptible to dose changes, providing clinicians with a dose-informed mechanism to review and correct segmentations for radiation therapy planning. These initial results suggest strong potential for employing such methods within a broader automated quality assurance system in the radiotherapy planning workflow. Code to reproduce this is available at https://github.com/amithjkamath/astra Clinical Relevance: ASTRA shows promise in indicating what regions of the OARs are more likely to impact the distribution of radiation dose.
引用
收藏
页数:4
相关论文
共 10 条
[1]   OpenKBP: The open-access knowledge-based planning grand challenge and dataset [J].
Babier, Aaron ;
Zhang, Binghao ;
Mahmood, Rafid ;
Moore, Kevin L. ;
Purdie, Thomas G. ;
McNiven, Andrea L. ;
Chan, Timothy C. Y. .
MEDICAL PHYSICS, 2021, 48 (09) :5549-5561
[2]  
Das Indra J, 2009, J Am Coll Radiol, V6, P514, DOI 10.1016/j.jacr.2008.12.013
[3]   Accurate method for evaluating the duration of the entire radiotherapy process [J].
Guo, Chenlei ;
Huang, Peng ;
Li, Yexiong ;
Dai, Jianrong .
JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2020, 21 (09) :252-258
[4]   How Sensitive Are Deep Learning Based Radiotherapy Dose Prediction Models To Variability In Organs At Risk Segmentation? [J].
Kamath, Amith ;
Poel, Robert ;
Willmann, Jonas ;
Andratschke, Nicolaus ;
Reyes, Mauricio .
2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
[5]   Technical Note: A cascade 3D U-Net for dose prediction in radiotherapy [J].
Liu, Shuolin ;
Zhang, Jingjing ;
Li, Teng ;
Yan, Hui ;
Liu, Jianfei .
MEDICAL PHYSICS, 2021, 48 (09) :5574-5582
[6]   Brain Tumors [J].
McFaline-Figueroa, J. Ricardo ;
Lee, Eudocia Q. .
AMERICAN JOURNAL OF MEDICINE, 2018, 131 (08) :874-882
[7]   ESTRO-ACROP guideline "target delineation of glioblastomas" [J].
Niyazi, Maximilian ;
Brada, Michael ;
Chalmers, Anthony J. ;
Combs, Stephanie E. ;
Erridge, Sara C. ;
Fiorentino, Alba ;
Grosu, Anca L. ;
Lagerwaard, Frank J. ;
Minniti, Giuseppe ;
Mirimanoff, Rene-Olivier ;
Ricardi, Umberto ;
Short, Susan C. ;
Weber, Damien C. ;
Belka, Claus .
RADIOTHERAPY AND ONCOLOGY, 2016, 118 (01) :35-42
[8]   Critical Impact of Radiotherapy Protocol Compliance and Quality in the Treatment of Advanced Head and Neck Cancer: Results From TROG 02.02 [J].
Peters, Lester J. ;
O'Sullivan, Brian ;
Giralt, Jordi ;
Fitzgerald, Thomas J. ;
Trotti, Andy ;
Bernier, Jacques ;
Bourhis, Jean ;
Yuen, Kally ;
Fisher, Richard ;
Rischin, Danny .
JOURNAL OF CLINICAL ONCOLOGY, 2010, 28 (18) :2996-3001
[9]   Technical Advances in Radiation Therapy for Brain Tumors [J].
Scaringi, Claudia ;
Agolli, Linda ;
Minniti, Giuseppe .
ANTICANCER RESEARCH, 2018, 38 (11) :6041-6045
[10]   Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma [J].
Stupp, R ;
Mason, WP ;
van den Bent, MJ ;
Weller, M ;
Fisher, B ;
Taphoorn, MJB ;
Belanger, K ;
Brandes, AA ;
Marosi, C ;
Bogdahn, U ;
Curschmann, J ;
Janzer, RC ;
Ludwin, SK ;
Gorlia, T ;
Allgeier, A ;
Lacombe, D ;
Cairncross, JG ;
Eisenhauer, E ;
Mirimanoff, RO ;
Van Den Weyngaert, D ;
Kaendler, S ;
Krauseneck, P ;
Vinolas, N ;
Villa, S ;
Wurm, RE ;
Maillot, MHB ;
Spagnolli, F ;
Kantor, G ;
Malhaire, JP ;
Renard, L ;
De Witte, O ;
Scandolaro, L ;
Vecht, CJ ;
Maingon, P ;
Lutterbach, J ;
Kobierska, A ;
Bolla, M ;
Souchon, R ;
Mitine, C ;
Tzuk-Shina, T ;
Kuten, A ;
Haferkamp, G ;
de Greve, J ;
Priou, F ;
Menten, J ;
Rutten, I ;
Clavere, P ;
Malmstrom, A ;
Jancar, B ;
Newlands, E .
NEW ENGLAND JOURNAL OF MEDICINE, 2005, 352 (10) :987-996