Deep Learning Models for Predicting Left Heart Abnormalities From Single-Lead Electrocardiogram for the Development of Wearable Devices

被引:6
作者
Sato, Masataka [1 ]
Kodera, Satoshi [1 ]
Setoguchi, Naoto [2 ]
Tanabe, Kengo [2 ]
Kushida, Shunichi [3 ]
Kanda, Junji [3 ]
Saji, Mike [4 ]
Nanasato, Mamoru [4 ]
Maki, Hisataka [5 ]
Fujita, Hideo [5 ]
Kato, Nahoko [6 ]
Watanabe, Hiroyuki [6 ]
Suzuki, Minami [7 ]
Takahashi, Masao [7 ]
Sawada, Naoko [8 ]
Yamasaki, Masao [8 ]
Sawano, Shinnosuke [1 ]
Katsushika, Susumu [1 ]
Shinohara, Hiroki [1 ]
Takeda, Norifumi [1 ]
Fujiu, Katsuhito [1 ,9 ]
Daimon, Masao [1 ]
Akazawa, Hiroshi [1 ]
Morita, Hiroyuki [1 ]
Komuro, Issei [1 ]
机构
[1] Univ Tokyo Hosp, Dept Cardiovasc Med, 7-3-1 Hongo,Bunkyo Ku, Tokyo, 1138655, Japan
[2] Mitsui Mem Hosp, Div Cardiol, Tokyo, Japan
[3] Asahi Gen Hosp, Dept Cardiovasc Med, Asahi, Japan
[4] Sakakibara Heart Inst, Dept Cardiol, Fuchu, Japan
[5] Jichi Med Univ, Saitama Med Ctr, Div Cardiovasc Med, Saitama, Japan
[6] Tokyo Bay Urayasu Ichikawa Med Ctr, Dept Cardiol, Urayasu, Japan
[7] JR Tokyo Gen Hosp, Dept Cardiol, Tokyo, Japan
[8] NTT Med Ctr Tokyo, Dept Cardiol, Tokyo, Japan
[9] Univ Tokyo, Dept Adv Cardiol, Tokyo, Japan
关键词
Key Words: Artificial intelligence; Electrocardiography; Single-lead ECG; Wearable device; LEFT-VENTRICULAR HYPERTROPHY; LEFT ATRIAL SIZE; ARTIFICIAL-INTELLIGENCE; SYSTOLIC DYSFUNCTION; FAILURE; RISK; CLASSIFICATION; ASSOCIATION; ENLARGEMENT; PREVALENCE;
D O I
10.1253/circj.CJ-23-0216
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Left heart abnormalities are risk factors for heart failure. However, echocardiography is not always available. Electrocardiograms (ECGs), which are now available from wearable devices, have the potential to detect these abnormalities. Nevertheless, whether a model can detect left heart abnormalities from single Lead I ECG data remains unclear.Methods and Results: We developed Lead I ECG models to detect low ejection fraction (EF), wall motion abnormality, left ventricular hypertrophy (LVH), left ventricular dilatation, and left atrial dilatation. We used a dataset comprising 229,439 paired sets of ECG and echocardiography data from 8 facilities, and validated the model using external verification with data from 2 facilities. The area under the receiver operating characteristic curves of our model was 0.913 for low EF, 0.832 for wall motion abnormality, 0.797 for LVH, 0.838 for left ventricular dilatation, and 0.802 for left atrial dilatation. In interpretation tests with 12 cardiologists, the accuracy of the model was 78.3% for low EF and 68.3% for LVH. Compared with cardiologists who read the 12-lead ECGs, the model's performance was superior for LVH and similar for low EF.Conclusions: From a multicenter study dataset, we developed models to predict left heart abnormalities using Lead I on the ECG. The Lead I ECG models show superior or equivalent performance to cardiologists using 12-lead ECGs.
引用
收藏
页码:146 / +
页数:20
相关论文
共 43 条
  • [21] An explainable artificial intelligence-enabled electrocardiogram analysis model for the classification of reduced left ventricular function
    Katsushika, Susumu
    Kodera, Satoshi
    Sawano, Shinnosuke
    Shinohara, Hiroki
    Setoguchi, Naoto
    Tanabe, Kengo
    Higashikuni, Yasutomi
    Takeda, Norifumi
    Fujiu, Katsuhito
    Daimon, Masao
    Akazawa, Hiroshi
    Morita, Hiroyuki
    Komuro, Issei
    [J]. EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2023, 4 (03): : 254 - 264
  • [22] The Effectiveness of a Deep Learning Model to Detect Left Ventricular Systolic Dysfunction from Electrocardiograms
    Katsushika, Susumu
    Kodera, Satoshi
    Nakamoto, Mitsuhiko
    Ninomiya, Kota
    Inoue, Shunsuke
    Sawano, Shinnosuke
    Kakuda, Nobutaka
    Takiguchi, Hiroshi
    Shinohara, Hiroki
    Matsuoka, Ryo
    Ieki, Hirotaka
    Higashikuni, Yasutomi
    Nakanishi, Koki
    Nakao, Tomoko
    Seki, Tomohisa
    Takeda, Norifumi
    Fujiu, Katsuhito
    Daimon, Masao
    Akazawa, Hiroshi
    Morita, Hiroyuki
    Komuro, Issei
    [J]. INTERNATIONAL HEART JOURNAL, 2021, 62 (06) : 1332 - 1341
  • [23] Left atrial enlargement increases the risk of major adverse cardiac events independent of coronary vasodilator capacity
    Koh, Angela S.
    Murthy, Venkatesh L.
    Sitek, Arkadiusz
    Gayed, Peter
    Bruyere, John, Jr.
    Wu, Justina
    Di Carli, Marcelo F.
    Dorbala, Sharmila
    [J]. EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2015, 42 (10) : 1551 - 1561
  • [24] Automatic Detection of Left Ventricular Dilatation and Hypertrophy from Electrocardiograms Using Deep Learning
    Kokubo, Takahiro
    Kodera, Satoshi
    Sawano, Shinnosuke
    Katsushika, Susumu
    Nakamoto, Mitsuhiko
    Takeuchi, Hirotoshi
    Kimura, Nisei
    Shinohara, Hiroki
    Matsuoka, Ryo
    Nakanishi, Koki
    Nakao, Tomoko
    Higashikuni, Yasutomi
    Takeda, Norifumi
    Fujiu, Katsuhito
    Daimon, Masao
    Akazawa, Hiroshi
    Morita, Hiroyuki
    Matsuyama, Yutaka
    Komuro, Issei
    [J]. INTERNATIONAL HEART JOURNAL, 2022, 63 (05) : 939 - 947
  • [25] Deep Learning-Based Algorithm for Detecting Aortic Stenosis Using Electrocardiography
    Kwon, Joon-Myoung
    Lee, Soo Youn
    Jeon, Ki-Hyun
    Lee, Yeha
    Kim, Kyung-Hee
    Park, Jinsik
    Oh, Byung-Hee
    Lee, Myong-Mook
    [J]. JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2020, 9 (07):
  • [26] Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging
    Lang, Roberto M.
    Badano, Luigi P.
    Mor-Avi, Victor
    Afilalo, Jonathan
    Armstrong, Anderson
    Ernande, Laura
    Flachskampf, Frank A.
    Foster, Elyse
    Goldstein, Steven A.
    Kuznetsova, Tatiana
    Lancellotti, Patrizio
    Muraru, Denisa
    Picard, Michael H.
    Rietzschel, Ernst R.
    Rudski, Lawrence
    Spencer, Kirk T.
    Tsang, Wendy
    Voigt, Jens-Uwe
    [J]. JOURNAL OF THE AMERICAN SOCIETY OF ECHOCARDIOGRAPHY, 2015, 28 (01) : 1 - U170
  • [27] Artificial Intelligence for Detection of Cardiovascular-Related Diseases from Wearable Devices: A Systematic Review and Meta-Analysis
    Lee, Solam
    Chu, Yuseong
    Ryu, Jiseung
    Park, Young Jun
    Yang, Sejung
    Koh, Sang Baek
    [J]. YONSEI MEDICAL JOURNAL, 2022, 63 : S93 - S107
  • [28] Artificial Intelligence-Enabled Model for Early Detection of Left Ventricular Hypertrophy and Mortality Prediction in Young to Middle-Aged Adults
    Liu, Chih-Min
    Hsieh, Ming-En
    Hu, Yu-Feng
    Wei, Tzu-Yin
    Wu, I-Chien
    Chen, Pei-Fen
    Lin, Yenn-Jiang
    Higa, Satoshi
    Yagi, Nobumori
    Chen, Shih-Ann
    Tseng, Vincent S.
    [J]. CIRCULATION-CARDIOVASCULAR QUALITY AND OUTCOMES, 2022, 15 (08): : 658 - 668
  • [29] Artificial Intelligence-Enabled Electrocardiogram Estimates Left Atrium Enlargement as a Predictor of Future Cardiovascular Disease
    Lou, Yu-Sheng
    Lin, Chin-Sheng
    Fang, Wen-Hui
    Lee, Chia-Cheng
    Ho, Ching-Liang
    Wang, Chih-Hung
    Lin, Chin
    [J]. JOURNAL OF PERSONALIZED MEDICINE, 2022, 12 (02):
  • [30] MATTHEWS JNS, 1994, NEPHROL DIAL TRANSPL, V9, P176