DIFFUSIVE LIMIT OF THE VLASOV-POISSON-FOKKER-PLANCK MODEL: QUANTITATIVE AND STRONG CONVERGENCE RESULTS

被引:0
作者
Blaustein, Alain [1 ]
机构
[1] Univ Toulouse III Paul Sabatier, 118 Route Narbonne, F-31062 Toulouse 9, France
关键词
hydrodynamic limit; Vlasov-Poisson-Fokker-Planck system; drift-diffusion-Poisson model; HIGH-FIELD LIMIT; KINETIC-EQUATIONS; REGULAR SOLUTIONS; GLOBAL EXISTENCE; SYSTEM; APPROXIMATION; ASYMPTOTICS; BEHAVIOR;
D O I
10.1137/22M1530197
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work tackles the diffusive limit for the Vlasov-Poisson-Fokker-Planck model. We derive a priori estimates which hold without restriction on the phase-space dimension and propose a strong convergence result in an L-2 space. Furthermore, we strengthen previous results by obtaining an explicit convergence rate arbitrarily close to the (formal) optimal rate, provided that the initial data lie in some L-p space with p large enough. Our result holds on bounded time intervals whose size grows to infinity in the asymptotic limit with explicit lower bound. The analysis relies on identifying the right set of phase-space coordinates to study the regime of interest. In this set of coordinates, the limiting model arises explicitly.
引用
收藏
页码:5464 / 5482
页数:19
相关论文
共 37 条