Modulation-based superradiant phase transition in the strong-coupling regime

被引:5
作者
Huang, Jin-Feng [1 ,2 ,3 ]
Tian, Lin [3 ]
机构
[1] Hunan Normal Univ, Key Lab Low Dimens Quantum Struct & Quantum Contr, Key Lab Matter Microstruct & Funct Hunan Prov, Dept Phys,Minist Educ, Changsha 410081, Peoples R China
[2] Hunan Normal Univ, Synerget Innovat Ctr Quantum Effects & Applicat, Changsha 410081, Peoples R China
[3] Univ Calif Merced, Sch Nat Sci, Merced, CA 95343 USA
基金
中国国家自然科学基金;
关键词
BODY APPROXIMATION METHODS; SOLVABLE MODEL; RADIATION-FIELD; COLD ATOMS; VALIDITY;
D O I
10.1103/PhysRevA.107.063713
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The Dicke model can exhibit quantum phase transition between the normal and the superradiant phases when the strength of the light-matter coupling exceeds the ultrastrong-coupling regime. However, it is challenging to observe this phase transition in practical systems due to limited coupling strength or finite two-photon A(2) terms. Here we show that by applying a periodic modulation to the frequency of the two-level systems in a standard Dicke model in the strong-coupling regime, an anisotropic Dicke model with tunable rotating and counter-rotating terms in the ultrastrong-coupling regime can be achieved. We calculate the ground state and the excitation spectrum of this model in terms of the modulation parameters. Our result shows that the superradiant phases can be observed in cavity- or circuit-quantum electrodynamics systems with strong coupling.
引用
收藏
页数:10
相关论文
共 43 条
  • [1] Superradiance phase transition in the presence of parameter fluctuations
    Ashhab, S.
    Semba, K.
    [J]. PHYSICAL REVIEW A, 2017, 95 (05)
  • [2] Controlling Discrete and Continuous Symmetries in "Superradiant" Phase Transitions with Circuit QED Systems
    Baksic, Alexandre
    Ciuti, Cristiano
    [J]. PHYSICAL REVIEW LETTERS, 2014, 112 (17)
  • [3] Exploring Symmetry Breaking at the Dicke Quantum Phase Transition
    Baumann, K.
    Mottl, R.
    Brennecke, F.
    Esslinger, T.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 107 (14)
  • [4] Dicke quantum phase transition with a superfluid gas in an optical cavity
    Baumann, Kristian
    Guerlin, Christine
    Brennecke, Ferdinand
    Esslinger, Tilman
    [J]. NATURE, 2010, 464 (7293) : 1301 - U1
  • [5] Dynamics of nonequilibrium Dicke models
    Bhaseen, M. J.
    Mayoh, J.
    Simons, B. D.
    Keeling, J.
    [J]. PHYSICAL REVIEW A, 2012, 85 (01):
  • [6] Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation
    Blais, A
    Huang, RS
    Wallraff, A
    Girvin, SM
    Schoelkopf, RJ
    [J]. PHYSICAL REVIEW A, 2004, 69 (06): : 062320 - 1
  • [7] Multi-mode ultra-strong coupling in circuit quantum electrodynamics
    Bosman, Sal J.
    Gely, Mario F.
    Singh, Vibhor
    Bruno, Alessandro
    Bothner, Daniel
    Steele, Gary A.
    [J]. NPJ QUANTUM INFORMATION, 2017, 3
  • [8] Robust preparation of many-body ground states in Jaynes-Cummings lattices
    Cai, Kang
    Parajuli, Prabin
    Long, Guilu
    Wong, Chee Wei
    Tian, Lin
    [J]. NPJ QUANTUM INFORMATION, 2021, 7 (01)
  • [9] COHERENCE IN SPONTANEOUS RADIATION PROCESSES
    DICKE, RH
    [J]. PHYSICAL REVIEW, 1954, 93 (01): : 99 - 110
  • [10] Proposed realization of the Dicke-model quantum phase transition in an optical cavity QED system
    Dimer, F.
    Estienne, B.
    Parkins, A. S.
    Carmichael, H. J.
    [J]. PHYSICAL REVIEW A, 2007, 75 (01):