Optimizing strength and fatigue crack propagation resistance of in-situ TiB2/Al-Cu-Mg composite sheet

被引:7
作者
Pu, Qingqing [1 ]
Wang, Zhiping [1 ]
Luo, Tai [2 ]
Li, Yugang [1 ,3 ]
Geng, Jiwei [1 ,3 ]
Xia, Peikang [1 ,4 ]
Li, Xianfeng [1 ,3 ,4 ]
Chen, Dong [1 ,3 ,4 ]
Wang, Hongze [1 ,3 ,4 ]
Wang, Haowei [1 ]
机构
[1] Shanghai Jiao Tong Univ, State Key Lab Met Matrix Composites, Shanghai 200240, Peoples R China
[2] Shanghai Aircraft Design & Res Inst, Shanghai 201203, Peoples R China
[3] Shanghai Jiao Tong Univ Anhui, Inst Alum Mat, Huaibei 235000, Peoples R China
[4] Anhui Prov Engn Res Ctr Aluminium Matrix Composite, Huaibei 235000, Peoples R China
基金
中国国家自然科学基金;
关键词
Al -Cu -Mg composite sheet; Precipitates; Strength; Fatigue crack propagation; Crack tip; AL-CU-MG; LOW-CYCLE FATIGUE; GROWTH; PRECIPITATION; BEHAVIOR; ALLOY; MICROSTRUCTURE; MECHANISMS; STRESS; SLIP;
D O I
10.1016/j.ijfatigue.2023.108058
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The industrial-grade TiB2/Al-Cu-Mg composite sheet was fabricated via casting and rolling methods. Cold-rolling coupled with low-temperature aging treatment was used to regulate the grain size, dislocation density, precipitates and TiB2 particle distribution, to optimize the strength and fatigue crack propagation (FCP) resistance of the sheet. The results show that pre-rolling deformation combined with low-temperature long-term aging is beneficial for obtaining fine grains, high-density dislocations, high-density nano precipitates and uniform particle distribution, all of which are conducive to improving strength. The TiB2/Al-Cu-Mg composite sheet can achieve remarkable ultimate tensile strength over 600 MPa regardless of its excellent elongation (12 %). Furthermore, uniformly distributed TiB2 particles and high-density nano precipitates are beneficial for offsetting the negative effect of high-density dislocations on FCP. Finally, the small pre-rolling deformation (5 %) combined with low-temperature long-term aging achieves excellent strength and FCP resistance combination.
引用
收藏
页数:14
相关论文
共 59 条
[21]   Tuning the microstructure features of in-situ nano TiB2/Al-Cu-Mg composites to enhance mechanical properties [J].
Geng, Jiwei ;
Liu, Gen ;
Hong, Tianran ;
Wang, Mingliang ;
Chen, Dong ;
Ma, Naiheng ;
Wang, Haowei .
JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 775 :193-201
[22]   The solution treatment of in-situ sub-micron TiB2/2024 Al composite [J].
Geng, Jiwei ;
Hong, Tianran ;
Ma, Yu ;
Wang, Mingliang ;
Chen, Dong ;
Ma, Naiheng ;
Wang, Haowei .
MATERIALS & DESIGN, 2016, 98 :186-193
[23]   On the reversibility of dislocation slip during cyclic deformation of Al alloys containing shear-resistant particles [J].
Han, W. Z. ;
Vinogradov, A. ;
Hutchinson, C. R. .
ACTA MATERIALIA, 2011, 59 (09) :3720-3736
[24]   Hall-Petch relation and boundary strengthening [J].
Hansen, N .
SCRIPTA MATERIALIA, 2004, 51 (08) :801-806
[25]   Influence of precipitates on low-cycle fatigue and crack growth behavior in an ultrafine-grained aluminum alloy [J].
Hockauf, K. ;
Wagner, M. F. -X. ;
Halle, T. ;
Niendorf, T. ;
Hockauf, M. ;
Lampke, T. .
ACTA MATERIALIA, 2014, 80 :250-263
[26]   Room-temperature low-cycle fatigue and fracture behaviour of asymmetrically rolled high-strength 7050 aluminium alloy plates [J].
Hou, L. G. ;
Xiao, W. L. ;
Su, H. ;
Wu, C. M. ;
Eskin, D. G. ;
Katgerman, L. ;
Zhuang, L. Z. ;
Zhang, J. S. .
INTERNATIONAL JOURNAL OF FATIGUE, 2021, 142
[27]   Enhanced damage tolerance through reconstructing residual stress and Cu-Mg co-clusters by pre-rolling in an Al-Cu-Mg alloy [J].
Huang, Tiantian ;
Zhao, Qi ;
Liu, Zhiyi ;
Bai, Song .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2017, 700 :241-249
[28]   Influence of grain structure and slip planarity on fatigue crack growth in low alloying artificially aged 2xxx aluminium alloys [J].
Kamp, N. ;
Gao, N. ;
Starink, M. J. ;
Sinclair, I. .
INTERNATIONAL JOURNAL OF FATIGUE, 2007, 29 (05) :869-878
[29]   Observation of giant diffusivity along dislocation cores [J].
Legros, Marc ;
Dehm, Gerhard ;
Arzt, Eduard ;
Balk, T. John .
SCIENCE, 2008, 319 (5870) :1646-1649
[30]   INFLUENCE OF SIC PARTICLE DISTRIBUTION AND PRESTRAINING ON FATIGUE CRACK-GROWTH RATES IN ALUMINUM AA 6061-SIC COMPOSITE-MATERIAL [J].
LEVIN, M ;
KARLSSON, B .
MATERIALS SCIENCE AND TECHNOLOGY, 1991, 7 (07) :596-607