Deep learning-based automatic detection for pulmonary nodules on chest radiographs: The relationship with background lung condition, nodule characteristics, and location

被引:2
|
作者
Ueno, Midori [1 ,2 ]
Yoshida, Kotaro [1 ]
Takamatsu, Atsushi [1 ]
Kobayashi, Takeshi [3 ]
Aoki, Takatoshi [2 ]
Gabata, Toshifumi [1 ]
机构
[1] Kanazawa Univ, Grad Sch Med Sci, Dept Radiol, 1-13 Takaramachi, Kanazawa, Ishikawa 9208641, Japan
[2] Univ Occupat & Environm Hlth, Sch Med, Dept Radiol, 1-1 Iseigaoka, Kitakyushu, Fukuoka 8078555, Japan
[3] Ishikawa Prefectural Cent Hosp, Dept Diagnost & Intervent Radiol, 1-2 Kuratsuki Higashi, Kanazawa, Ishikawa 9208530, Japan
关键词
Computer-aided diagnosis; Deep learning-based automatic detection; Chest radiograph; Pulmonary nodules; Background lung score; COMPUTER-AIDED DETECTION; CANCER; CT;
D O I
10.1016/j.ejrad.2023.111002
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: Computer-aided diagnosis (CAD), which assists in the interpretation of chest radiographs, is becoming common. However, few studies have evaluated the benefits and pitfalls of CAD in the real world. This study aimed to evaluate the independent performance of commercially available deep learning-based automatic detection (DLAD) software, EIRL Chest X-ray Lung Nodule, in a cohort that included patients with background pulmonary abnormalities often encountered in clinical situations. Methods: Patients with clinically suspected lung cancer for whom chest radiography was performed within a month before or after CT scan between June 2020 and May 2022 in our institution were enrolled. The reference standard was created using a bounding box annotated by two radiologists with reference to the CT. The visibility score, characteristics, location of the pulmonary nodules, presence of overlapping structures or pulmonary disease, and background lung score were manually determined. Results: We included 388 patients. The DLAD software detected 222 of the 322 nodules visible on manual evaluation, with a sensitivity of 0.689 and a false-positive rate of 0.168. The detectability of the DLAD software was significantly lower for small and subsolid and nodules with overlapping structures. The visibility score and sensitivity of detection by the DLAD software were positively correlated. The relationship between the background lung score and detection by the DLAD software was unclear. Conclusion: The standalone performance of DLAD in detecting pulmonary nodules exhibited a sensitivity of 0.689 and a false-positive rate of 0.168. Understanding the characteristics of DLAD is crucial when interpreting chest radiographs with the assistance of the DLAD.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Development and Validation of Deep Learning-based Automatic Detection Algorithm for Malignant Pulmonary Nodules on Chest Radiographs
    Nam, Ju Gang
    Park, Sunggyun
    Hwang, Eui Jin
    Lee, Jong Hyuk
    Jin, Kwang-Nam
    Lim, Kun Young
    Vu, Thienkai Huy
    Sohn, Jae Ho
    Hwang, Sangheum
    Goo, Jin Mo
    Park, Chang Min
    RADIOLOGY, 2019, 290 (01) : 218 - 228
  • [2] A systematic approach to deep learning-based nodule detection in chest radiographs
    Behrendt, Finn
    Bengs, Marcel
    Bhattacharya, Debayan
    Krueger, Julia
    Opfer, Roland
    Schlaefer, Alexander
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [3] Development and Validation of a Deep Learning-based Automatic Detection Algorithm for Active Pulmonary Tuberculosis on Chest Radiographs
    Hwang, Eui Jin
    Park, Sunggyun
    Jin, Kwang-Nam
    Kim, Jung Im
    Choi, So Young
    Lee, Jong Hyuk
    Goo, Jin Mo
    Aum, Jaehong
    Yim, Jae-Joon
    Park, Chang Min
    Kim, Dong Hyeon
    Kim, Dong Hyeon
    Woo, Sungmin
    Choi, Wonseok
    Hwang, In Pyung
    Song, Yong Sub
    Lim, Jiyeon
    Kim, Hyungjin
    Wi, Jae Yeon
    Oh, Su Suk
    Kang, Mi-Jin
    Woo, Chris
    CLINICAL INFECTIOUS DISEASES, 2019, 69 (05) : 739 - 747
  • [4] Extravalidation and reproducibility results of a commercial deep learning-based automatic detection algorithm for pulmonary nodules on chest radiographs at tertiary hospital
    Koo, Young Hoon
    Shin, Kyung Eun
    Park, Jai Soung
    Lee, Jae Wook
    Byun, Seonghwan
    Lee, Heon
    JOURNAL OF MEDICAL IMAGING AND RADIATION ONCOLOGY, 2021, 65 (01) : 15 - 22
  • [5] Deep Learning-based Automatic Detection Algorithm for Reducing Overlooked Lung Cancers on Chest Radiographs
    Jang, Sowon
    Song, Hwayoung
    Shin, Yoon Joo
    Kim, Junghoon
    Kim, Jihang
    Lee, Kyung Won
    Lee, Sung Soo
    Lee, Woojoo
    Lee, Seungjae
    Lee, Kyung Hee
    RADIOLOGY, 2020, 296 (03) : 652 - 661
  • [6] Development and Validation of a Deep Learning-Based Synthetic Bone-Suppressed Model for Pulmonary Nodule Detection in Chest Radiographs
    Kim, Hwiyoung
    Lee, Kye Ho
    Han, Kyunghwa
    Lee, Ji Won
    Kim, Jin Young
    Im, Dong Jin
    Hong, Yoo Jin
    Choi, Byoung Wook
    Hur, Jin
    JAMA NETWORK OPEN, 2023, 6 (01) : e2253820
  • [7] A Solitary Feature-Based Lung Nodule Detection Approach for Chest X-Ray Radiographs
    Li, Xuechen
    Shen, Linlin
    Luo, Suhuai
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2018, 22 (02) : 516 - 524
  • [8] Validation of a Deep Learning Algorithm for the Detection of Malignant Pulmonary Nodules in Chest Radiographs
    Yoo, Hyunsuk
    Kim, Ki Hwan
    Singh, Ramandeep
    Digumarthy, Subba R.
    Kalra, Mannudeep K.
    JAMA NETWORK OPEN, 2020, 3 (09)
  • [9] Deep learning-based detection system for multiclass lesions on chest radiographs: comparison with observer readings
    Park, Sohee
    Lee, Sang Min
    Lee, Kyung Hee
    Jung, Kyu-Hwan
    Bae, Woong
    Choe, Jooae
    Seo, Joon Beom
    EUROPEAN RADIOLOGY, 2020, 30 (03) : 1359 - 1368
  • [10] Research on automatic detection algorithm of pulmonary nodules based on deep learning
    Zhao, Anqi
    Deng, Jie
    Zhong, Laicheng
    Duan, Xuliang
    Zhang, Jiaxin
    Peng, Yuhao
    2019 4TH INTERNATIONAL CONFERENCE ON MECHANICAL, CONTROL AND COMPUTER ENGINEERING (ICMCCE 2019), 2019, : 893 - 897