Catalan generating functions for bounded operators

被引:0
|
作者
Miana, Pedro J. [1 ]
Romero, Natalia [2 ]
机构
[1] Univ Zaragoza, Inst Univ Matemat & Aplicac, Dept Matemat, Zaragoza 50009, Spain
[2] Univ La Rioja, Dept Matemat & Comp, Logrono 26006, Spain
关键词
Catalan numbers; Generating function; Power-bounded operators; Quadratic equation; Iterative methods; NUMERICAL-SOLUTION; ALGORITHM;
D O I
10.1007/s43034-023-00290-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the solution of the quadratic equation TY2 - Y + I = 0 where T is a linear and bounded operator on a Banach space X. We describe the spectrum set and the resolvent operator of Y in terms of the ones of T. In the case that 4T is a power- bounded operator, we showthat a solution (named Catalan generating function) of the above equation is given by the Taylor series C(T) := Sigma(infinity)(n=0) CnT (n), where the sequence (Cn) (n >= 0) is thewell-known Catalan numbers sequence. We express C(T) by means of an integral representation which involves the resolvent operator (lambda T)(-1). Some particular examples to illustrate our results are given, in particular an iterative method defined for square matrices T which involves Catalan numbers.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Discrete Generating Functions
    S. S. Akhtamova
    V. S. Alekseev
    A. P. Lyapin
    Mathematical Notes, 2023, 114 : 1087 - 1093
  • [22] Discrete Generating Functions
    Akhtamova, S. S.
    Alekseev, V. S.
    Lyapin, A. P.
    MATHEMATICAL NOTES, 2023, 114 (5-6) : 1087 - 1093
  • [23] Involutions on Generating Functions
    Kida, Masanari
    Urata, Yuichiro
    JOURNAL OF INTEGER SEQUENCES, 2013, 16 (01)
  • [24] Derivative bounded functional calculus of power bounded operators on Banach spaces
    Loris Arnold
    Acta Scientiarum Mathematicarum, 2021, 87 : 265 - 294
  • [25] Symmetry in Generating Functions
    Watanabe, Shigeru
    SYMMETRY-BASEL, 2010, 2 (01): : 346 - 365
  • [26] Derivative bounded functional calculus of power bounded operators on Banach spaces
    Arnold, Loris
    ACTA SCIENTIARUM MATHEMATICARUM, 2021, 87 (1-2): : 265 - 294
  • [27] Generating Functions Subject to Adjacency Constraints for Specialization of Mechanisms
    Lin, Shu-Hong
    Wu, Chiu-Chin
    Hwang, Yii-Wen
    JOURNAL OF THE CHINESE SOCIETY OF MECHANICAL ENGINEERS, 2011, 32 (05): : 401 - 408
  • [28] Power bounded operators and supercyclic vectors II
    Müller, V
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (10) : 2997 - 3004
  • [29] Generating functions for inscribed polyominoes
    Goupil, Alain
    Cloutier, Hugo
    Pellerin, Marie-Eve
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (1-2) : 151 - 166
  • [30] Generating functions for permutation representations
    Takegahara, Y
    JOURNAL OF ALGEBRA, 2004, 281 (01) : 68 - 82