Time of day dependent longitudinal changes in resting-state fMRI

被引:1
|
作者
Vaisvilaite, Liucija [1 ,2 ]
Andersson, Micael [3 ,4 ]
Salami, Alireza [3 ,4 ,5 ]
Specht, Karsten [1 ,2 ,6 ]
机构
[1] Univ Bergen, Dept Biol & Med Psychol, ReState Res Grp, Bergen, Norway
[2] Haukel & Univ Hosp, Mohn Med & Imaging Visualizat Ctr, Bergen, Norway
[3] Umea Univ, Umea Ctr Funct Brain Imaging, Umea, Sweden
[4] Umea Univ, Dept Integrat Med Biol, Umea, Sweden
[5] Karolinska Inst, Ageing Res Ctr, Stockholm, Sweden
[6] UiT The Arctic Univ Norway, Dept Educ, Tromso, Norway
来源
FRONTIERS IN NEUROLOGY | 2023年 / 14卷
基金
瑞典研究理事会;
关键词
resting-state; fMRI; dynamic causal modeling (DCM); time of day (ToD); circadian rythm; FUNCTIONAL CONNECTIVITY; BRAIN; NETWORKS; MEMORY;
D O I
10.3389/fneur.2023.1166200
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Longitudinal studies have become more common in the past years due to their superiority over cross-sectional samples. In light of the ongoing replication crisis, the factors that may introduce variability in resting-state networks have been widely debated. This publication aimed to address the potential sources of variability, namely, time of day, sex, and age, in longitudinal studies within individual resting-state fMRI data. DCM was used to analyze the fMRI time series, extracting EC connectivity measures and parameters that define the BOLD signal. In addition, a two-way ANOVA was used to assess the change in EC and parameters that define the BOLD signal between data collection waves. The results indicate that time of day and gender have significant model evidence for the parameters that define the BOLD signal but not EC. From the ANOVA analysis, findings indicate that there was a significant change in the two nodes of the DMN and their connections with the fronto-parietal network. Overall, these findings suggest that in addition to age and gender, which are commonly accounted for in the fMRI data collection, studies should note the time of day, possibly treating it as a covariate in longitudinal samples.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Changes in resting-state fMRI in vestibular neuritis
    Helmchen, Christoph
    Ye, Zheng
    Sprenger, Andreas
    Munte, Thomas F.
    BRAIN STRUCTURE & FUNCTION, 2014, 219 (06): : 1889 - 1900
  • [2] Visual Learning Induces Changes in Resting-State fMRI Multivariate Pattern of Information
    Guidotti, Roberto
    Del Gratta, Cosimo
    Baldassarre, Antonello
    Romani, Gian Luca
    Corbetta, Maurizio
    JOURNAL OF NEUROSCIENCE, 2015, 35 (27): : 9786 - 9798
  • [3] Longitudinal Evaluation of Resting-State fMRI After Acute Stroke With Hemiparesis
    Golestani, Ali-Mohammad
    Tymchuk, Sarah
    Demchuk, Andrew
    Goodyear, Bradley G.
    NEUROREHABILITATION AND NEURAL REPAIR, 2013, 27 (02) : 153 - 163
  • [4] Time course based artifact identification for independent components of resting-state fMRI
    Rummel, Christian
    Verma, Rajeev Kumar
    Schoepf, Veronika
    Abela, Eugenio
    Hauf, Martinus
    Zapata Berruecos, Jose Fernando
    Wiest, Roland
    FRONTIERS IN HUMAN NEUROSCIENCE, 2013, 7
  • [5] Increased interhemispheric resting-state functional connectivity in paroxysmal kinesigenic dyskinesia: A resting-state fMRI study
    Ren, Jiechuan
    Lei, Du
    Yang, Tianhua
    An, Dongmei
    Xiao, Fenglai
    Li, Lei
    Huang, Xiaoqi
    Gong, Qiyong
    Zhou, Dong
    JOURNAL OF THE NEUROLOGICAL SCIENCES, 2015, 351 (1-2) : 93 - 98
  • [6] Lag structure in resting-state fMRI
    Mitra, A.
    Snyder, A. Z.
    Hacker, C. D.
    Raichle, M. E.
    JOURNAL OF NEUROPHYSIOLOGY, 2014, 111 (11) : 2374 - 2391
  • [7] Frequency-Dependent Changes in Interhemispheric Functional Connectivity Measured by Resting-State fMRI in Children With Idiopathic Generalized Epilepsy
    Jiang, Lin
    Ma, Xuejin
    Li, Shiguang
    Luo, Hongjian
    Zhang, Guoming
    Wang, Yanan
    Zhang, Tijiang
    FRONTIERS IN NEUROLOGY, 2020, 11
  • [8] Changes in resting-state fMRI in vestibular neuritis
    Christoph Helmchen
    Zheng Ye
    Andreas Sprenger
    Thomas F. Münte
    Brain Structure and Function, 2014, 219 : 1889 - 1900
  • [9] Phenotyping Superagers Using Resting-State fMRI
    de Godoy, L. L.
    Studart-Neto, A.
    de Paula, D. R.
    Green, N.
    Halder, A.
    Arantes, P.
    Chaim, K. T.
    Moraes, N. C.
    Yassuda, M. S.
    Nitrini, R.
    Dresler, M.
    Leite, C. da Costa
    Panovska-Griffiths, J.
    Soddu, A.
    Bisdas, S.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2023, 44 (04) : 424 - 433
  • [10] Functional Connectivity Analysis of Resting-State fMRI Networks in Nicotine Dependent Patients
    Smith, Aria
    Ehtemami, Anahid
    Fratte, Daniel
    Meyer-Baese, Anke
    Zavala-Romero, Olmo
    Goudriaan, Anna E.
    Schmaal, Lianne
    Schulte, Mieke H. J.
    MEDICAL IMAGING 2016-BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2016, 9788