Hyperspectral pathology image classification using dimension-driven multi-path attention residual network

被引:45
作者
Zhang, Xueyu [1 ,2 ]
Li, Wei [1 ,2 ]
Gao, Chenzhong [1 ,2 ]
Yang, Yue [3 ]
Chang, Kan [4 ,5 ]
机构
[1] Beijing Inst Technol, Sch Informat & Elect, Beijing 100081, Peoples R China
[2] Beijing Key Lab Fract Signals & Syst, Beijing 100081, Peoples R China
[3] China Japan Friendship Hosp, Dept Kidney Dis, Beijing 100081, Peoples R China
[4] Guangxi Univ, Sch Comp & Elect Informat, Nanning 530004, Guangxi, Peoples R China
[5] Guangxi Univ, Guangxi Key Lab Multimedia Commun & Network Techno, Nanning 530004, Guangxi, Peoples R China
基金
北京市自然科学基金;
关键词
Medical hyperspectral images; Deep learning; Convolutional neural networks; Classification; Membranous nephropathy; CHRONIC KIDNEY-DISEASE; FEATURE-EXTRACTION; SEGMENTATION; RECEPTOR;
D O I
10.1016/j.eswa.2023.120615
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hyperspectral imaging technology (HSI) can capture pathological tissue's spatial and spectral information simultaneously, with wide coverage and high accuracy characteristics, and is widely used in biomedical imaging. As an image-spectrum merging technology, HSI can obtain more practical information in disease diagnosis, which is helpful for pathological analysis. Focusing on the characteristics of scattered distribution of pathological areas, and combined with the advantages of HSI technology, a dimension-driven multi-path attention residual network (DDMARN) is proposed to pixel-level classification for membranous nephropathy (MN). To make full use of the space-spectrum information of hyperspectral data, dimension-driven multi -path attention residual block (DDMARB) is developed to effectively obtain the multi-scale features and differently treats these features containing different amounts of information through the channel attention (CA) mechanism, which makes the data depth features better expressed. The experimental results demonstrate that the proposed DDMARN performs very competitively in the PMN and HBV-MN classification tasks. The average of OA (%) & PLUSMN; standard deviation (%), AA (%) & PLUSMN; standard deviation (%), and Kappa coefficient & PLUSMN; standard deviation of 10 experiments results are 96.23 & PLUSMN; 0.17, 90.24 & PLUSMN; 0.18, and 0.8654 & PLUSMN; 0.0056, respectively, the optimal values in the comparison algorithm, and the model parameter is only 700K.
引用
收藏
页数:13
相关论文
共 64 条
[1]   Improved inception-residual convolutional neural network for object recognition [J].
Alom, Md Zahangir ;
Hasan, Mahmudul ;
Yakopcic, Chris ;
Taha, Tarek M. ;
Asari, Vijayan K. .
NEURAL COMPUTING & APPLICATIONS, 2020, 32 (01) :279-293
[2]   Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network [J].
Anthimopoulos, Marios ;
Christodoulidis, Stergios ;
Ebner, Lukas ;
Christe, Andreas ;
Mougiakakou, Stavroula .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (05) :1207-1216
[3]   Deep learning models for COVID-19 infected area segmentation in CT images [J].
Athanasios, A., V ;
Eftychios, E. P. ;
Iason, I. K. ;
Anastasios, A. D. ;
Nikolaos, N. D. .
THE 14TH ACM INTERNATIONAL CONFERENCE ON PERVASIVE TECHNOLOGIES RELATED TO ASSISTIVE ENVIRONMENTS, PETRA 2021, 2021, :404-411
[4]   Membranous nephropathy: from models to man [J].
Beck, Laurence H., Jr. ;
Salant, David J. .
JOURNAL OF CLINICAL INVESTIGATION, 2014, 124 (06) :2307-2314
[5]   Hepatitis B virus-associated nephropathy [J].
Bhimma, R ;
Coovadia, HM .
AMERICAN JOURNAL OF NEPHROLOGY, 2004, 24 (02) :198-211
[6]   Step-wise integration of deep class-specific learning for dermoscopic image segmentation [J].
Bi, Lei ;
Kim, Jinman ;
Ahn, Euijoon ;
Kumar, Ashnil ;
Feng, Dagan ;
Fulham, Michael .
PATTERN RECOGNITION, 2019, 85 :78-89
[7]  
Cao H., 2021, arXiv, DOI 10.48550/arXiv.2105.05537
[8]   NELL1 is a target antigen in malignancy-associated membranous nephropathy [J].
Caza, Tiffany N. ;
Hassen, Samar I. ;
Dvanajscak, Zeljko ;
Kuperman, Michael ;
Edmondson, Rick ;
Herzog, Christian ;
Storey, Aaron ;
Arthur, John ;
Cossey, L. Nicholas ;
Sharma, Shree G. ;
Kenan, Daniel J. ;
Larsen, Christopher P. .
KIDNEY INTERNATIONAL, 2021, 99 (04) :967-976
[9]   A Two-Stage Convolutional Neural Network for Joint Demosaicking and Super-Resolution [J].
Chang, Kan ;
Li, Hengxin ;
Tan, Yufei ;
Ding, Pak Lun Kevin ;
Li, Baoxin .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (07) :4238-4254
[10]   Accurate single image super-resolution using multi-path wide-activated residual network [J].
Chang, Kan ;
Li, Minghong ;
Ding, Pak Lun Kevin ;
Li, Baoxin .
SIGNAL PROCESSING, 2020, 172