Artificial Intelligence for Antimicrobial Resistance Prediction: Challenges and Opportunities towards Practical Implementation

被引:61
作者
Ali, Tabish [1 ]
Ahmed, Sarfaraz [2 ]
Aslam, Muhammad [3 ]
机构
[1] Hanyang Univ, Dept Civil & Environm Engn, Seoul 04763, South Korea
[2] Hanyang Univ, Dept Elect & Comp Engn, Seoul 04763, South Korea
[3] Sejong Univ, Dept Artificial Intelligence, Seoul 05006, South Korea
来源
ANTIBIOTICS-BASEL | 2023年 / 12卷 / 03期
关键词
antimicrobial resistance genes; artificial intelligence; deep learning; machine learning; challenges and opportunities; GENES; SURVEILLANCE; ATTENTION; OUTCOMES;
D O I
10.3390/antibiotics12030523
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
Antimicrobial resistance (AMR) is emerging as a potential threat to many lives worldwide. It is very important to understand and apply effective strategies to counter the impact of AMR and its mutation from a medical treatment point of view. The intersection of artificial intelligence (AI), especially deep learning/machine learning, has led to a new direction in antimicrobial identification. Furthermore, presently, the availability of huge amounts of data from multiple sources has made it more effective to use these artificial intelligence techniques to identify interesting insights into AMR genes such as new genes, mutations, drug identification, conditions favorable to spread, and so on. Therefore, this paper presents a review of state-of-the-art challenges and opportunities. These include interesting input features posing challenges in use, state-of-the-art deep-learning/machine-learning models for robustness and high accuracy, challenges, and prospects to apply these techniques for practical purposes. The paper concludes with the encouragement to apply AI to the AMR sector with the intention of practical diagnosis and treatment, since presently most studies are at early stages with minimal application in the practice of diagnosis and treatment of disease.
引用
收藏
页数:16
相关论文
共 105 条
[41]   Same-day antimicrobial susceptibility test using acoustic-enhanced flow cytometry visualized with supervised machine learning [J].
Inglis, Timothy J. J. ;
Paton, Teagan F. ;
Kopczyk, Malgorzata K. ;
Mulroney, Kieran T. ;
Carson, Christine F. .
JOURNAL OF MEDICAL MICROBIOLOGY, 2020, 69 (05) :657-669
[42]   Clinical microbiology: Past, present, and future [J].
Isenberg, HD .
JOURNAL OF CLINICAL MICROBIOLOGY, 2003, 41 (03) :917-918
[43]  
Javaid M, 2022, International Journal of Intelligent Networks, V3, P58, DOI [10.1016/j.ijin.2022.05.002, 10.1016/j.ijin.2022.05.002, DOI 10.1016/J.IJIN.2022.05.002]
[44]  
Jorgensen JH, 2007, MANUAL OF CLINICAL MICROBIOLOGY, 9TH ED, P1152
[45]  
Joshi G, 2023, medRxiv, DOI [10.1101/2022.12.07.22283216, 10.1101/2022.12.07.22283216, DOI 10.1101/2022.12.07.22283216]
[46]   A biochemically-interpretable machine learning classifier for microbial GWAS [J].
Kavvas, Erol S. ;
Yang, Laurence ;
Monk, Jonathan M. ;
Heckmann, David ;
Palsson, Bernhard O. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[47]   Key challenges for delivering clinical impact with artificial intelligence [J].
Kelly, Christopher J. ;
Karthikesalingam, Alan ;
Suleyman, Mustafa ;
Corrado, Greg ;
King, Dominic .
BMC MEDICINE, 2019, 17 (01)
[48]   Predicting antimicrobial resistance in Pseudomonas aeruginosa with machine learning-enabled molecular diagnostics [J].
Khaledi, Ariane ;
Weimann, Aaron ;
Schniederjans, Monika ;
Asgari, Ehsaneddin ;
Kuo, Tzu-Hao ;
Oliver, Antonio ;
Cabot, Gabriel ;
Kola, Axel ;
Gastmeier, Petra ;
Hogardt, Michael ;
Jonas, Daniel ;
Mofrad, Mohammad R. K. ;
Bremges, Andreas ;
McHardy, Alice C. ;
Haeussler, Susanne .
EMBO MOLECULAR MEDICINE, 2020, 12 (03)
[49]   Transcriptome Profiling of Antimicrobial Resistance in Pseudomonas aeruginosa [J].
Khaledi, Ariane ;
Schniederjans, Monika ;
Pohl, Sarah ;
Rainer, Roman ;
Bodenhofer, Ulrich ;
Xia, Boyang ;
Klawonn, Frank ;
Bruchmann, Sebastian ;
Preusse, Matthias ;
Eckweiler, Denitsa ;
Doetsch, Andreas ;
Haeussler, Susanne .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2016, 60 (08) :4722-4733
[50]   VAMPr: VAriant Mapping and Prediction of antibiotic resistance via explainable features and machine learning [J].
Kim, Jiwoong ;
Greenberg, David E. ;
Pifer, Reed ;
Jiang, Shuang ;
Xiao, Guanghua ;
Shelburne, Samuel A. ;
Koh, Andrew ;
Xie, Yang ;
Zhan, Xiaowei .
PLOS COMPUTATIONAL BIOLOGY, 2020, 16 (01)