Artificial Intelligence for Antimicrobial Resistance Prediction: Challenges and Opportunities towards Practical Implementation

被引:45
作者
Ali, Tabish [1 ]
Ahmed, Sarfaraz [2 ]
Aslam, Muhammad [3 ]
机构
[1] Hanyang Univ, Dept Civil & Environm Engn, Seoul 04763, South Korea
[2] Hanyang Univ, Dept Elect & Comp Engn, Seoul 04763, South Korea
[3] Sejong Univ, Dept Artificial Intelligence, Seoul 05006, South Korea
来源
ANTIBIOTICS-BASEL | 2023年 / 12卷 / 03期
关键词
antimicrobial resistance genes; artificial intelligence; deep learning; machine learning; challenges and opportunities; GENES; SURVEILLANCE; ATTENTION; OUTCOMES;
D O I
10.3390/antibiotics12030523
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
Antimicrobial resistance (AMR) is emerging as a potential threat to many lives worldwide. It is very important to understand and apply effective strategies to counter the impact of AMR and its mutation from a medical treatment point of view. The intersection of artificial intelligence (AI), especially deep learning/machine learning, has led to a new direction in antimicrobial identification. Furthermore, presently, the availability of huge amounts of data from multiple sources has made it more effective to use these artificial intelligence techniques to identify interesting insights into AMR genes such as new genes, mutations, drug identification, conditions favorable to spread, and so on. Therefore, this paper presents a review of state-of-the-art challenges and opportunities. These include interesting input features posing challenges in use, state-of-the-art deep-learning/machine-learning models for robustness and high accuracy, challenges, and prospects to apply these techniques for practical purposes. The paper concludes with the encouragement to apply AI to the AMR sector with the intention of practical diagnosis and treatment, since presently most studies are at early stages with minimal application in the practice of diagnosis and treatment of disease.
引用
收藏
页数:16
相关论文
共 105 条
[1]   Identifying Antibiotic Use Targets for the Management of Antibiotic Resistance Using an Extended-Spectrum β-Lactamase-Producing Escherichia coli Case: A Threshold Logistic Modeling Approach [J].
Aldeyab, Mamoon A. ;
Bond, Stuart E. ;
Conway, Barbara R. ;
Lee-Milner, Jade ;
Sarma, Jayanta B. ;
Lattyak, William J. .
ANTIBIOTICS-BASEL, 2022, 11 (08)
[2]   Prediction of Susceptibility to First-Line Tuberculosis Drugs by DNA Sequencing [J].
Allix-Beguec, Caroline ;
Arandjelovic, Irena ;
Bi, Lijun ;
Beckert, Patrick ;
Bonnet, Maryline ;
Bradley, Phelim ;
Cabibbe, Andrea M. ;
Cancino-Munoz, Irving ;
Caulfield, Mark J. ;
Chaiprasert, Angkana ;
Cirillo, Daniela M. ;
Clifton, David ;
Comas, Inaki ;
Crook, Derrick W. ;
De Filippo, Maria R. ;
de Neeling, Han ;
Diel, Roland ;
Drobniewski, Francis A. ;
Faksri, Kiatichai ;
Farhat, Maha R. ;
Fleming, Joy ;
Fowler, Philip ;
Fowler, Tom A. ;
Gao, Qian ;
Gardy, Jennifer ;
Gascoyne-Binzi, Deborah ;
Gibertoni-Cruz, Ana-Luiza ;
Gil-Brusola, Ana ;
Golubchik, Tanya ;
Gonzalo, Ximena ;
Grandjean, Louis ;
He, Guangxue ;
Guthrie, Jennifer L. ;
Hoosdally, Sarah ;
Hunt, Martin ;
Iqbal, Zamin ;
Ismail, Nazir ;
Johnston, James ;
Khanzada, Faisal M. ;
Khor, Chiea C. ;
Kohl, Thomas A. ;
Kong, Clare ;
Lipworth, Sam ;
Liu, Qingyun ;
Maphalala, Gugu ;
Martinez, Elena ;
Mathys, Vanessa ;
Merker, Matthias ;
Miotto, Paolo ;
Mistry, Nerges .
NEW ENGLAND JOURNAL OF MEDICINE, 2018, 379 (15) :1403-1415
[3]  
Alpaydin E., 2020, Introduction to Machine Learning, V4th
[4]   Applications of Machine Learning to the Problem of Antimicrobial Resistance: an Emerging Model for Translational Research [J].
Anahtar, Melis N. ;
Yang, Jason H. ;
Kanjilal, Sanjat .
JOURNAL OF CLINICAL MICROBIOLOGY, 2021, 59 (07)
[5]   DeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic data [J].
Arango-Argoty, Gustavo ;
Garner, Emily ;
Prudent, Amy ;
Heath, Lenwood S. ;
Vikesland, Peter ;
Zhang, Liqing .
MICROBIOME, 2018, 6
[6]   Integrating whole-genome sequencing within the National Antimicrobial Resistance Surveillance Program in the Philippines [J].
Argimon, Silvia ;
Masim, Melissa A. L. ;
Gayeta, June M. ;
Lagrada, Marietta L. ;
Macaranas, Polle K., V ;
Cohen, Victoria ;
Limas, Marilyn T. ;
Espiritu, Holly O. ;
Palarca, Janziel C. ;
Chilam, Jeremiah ;
Jamoralin Jr, Manuel C. ;
Villamin, Alfred S. ;
Borlasa, Janice B. ;
Olorosa, Agnettah M. ;
Hernandez, Lara F. T. ;
Boehme, Karis D. ;
Jeffrey, Benjamin ;
Abudahab, Khalil ;
Hufano, Charmian M. ;
Sia, Sonia B. ;
Stelling, John ;
Holden, Matthew T. G. ;
Aanensen, David M. ;
Carlos, Celia C. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[7]   Identification of Salmonella for public health surveillance using whole genome sequencing [J].
Ashton, Philip M. ;
Nair, Satheesh ;
Peters, Tansy M. ;
Bale, Janet A. ;
Powell, David G. ;
Painset, Anais ;
Tewolde, Rediat ;
Schaefer, Ulf ;
Jenkins, Claire ;
Dallman, Timothy J. ;
de Pinna, Elizabeth M. ;
Grant, Kathie A. .
PEERJ, 2016, 4
[8]   Antibiotic Resistance: One Health One World Outlook [J].
Aslam, Bilal ;
Khurshid, Mohsin ;
Arshad, Muhammad Imran ;
Muzammil, Saima ;
Rasool, Maria ;
Yasmeen, Nafeesa ;
Shah, Taif ;
Chaudhry, Tamoor Hamid ;
Rasool, Muhammad Hidayat ;
Shahid, Aqsa ;
Xia, Xueshan ;
Baloch, Zulqarnain .
FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2021, 11
[9]   Multi-step ahead wind power forecasting based on dual-attention mechanism [J].
Aslam, Muhammad ;
Kim, Jun-Sung ;
Jung, Jaesung .
ENERGY REPORTS, 2023, 9 :239-251
[10]   Two-Stage Attention Over LSTM With Bayesian Optimization for Day-Ahead Solar Power Forecasting [J].
Aslam, Muhammad ;
Lee, Seung-Jae ;
Khang, Sang-Hee ;
Hong, Sugwon .
IEEE ACCESS, 2021, 9 :107387-107398