Recent Progress in Silicon-Based Materials for Performance-Enhanced Lithium-Ion Batteries

被引:36
作者
Kong, Xiangzhong [1 ,2 ]
Xi, Ziyang [1 ,2 ]
Wang, Linqing [1 ,2 ]
Zhou, Yuheng [1 ,2 ]
Liu, Yong [1 ,2 ]
Wang, Lihua [1 ,2 ]
Li, Shi [1 ,2 ]
Chen, Xi [1 ,2 ]
Wan, Zhongmin [1 ,2 ]
机构
[1] Hunan Inst Sci & Technol, Coll Mech Engn, Yueyang 414006, Peoples R China
[2] Hunan Inst Sci & Technol, Inst New Energy, Yueyang 414006, Peoples R China
基金
中国国家自然科学基金;
关键词
Si-based materials; anode; modification strategy; lithiation; de-lithiation mechanism; lithium-ion batteries; SOLID-ELECTROLYTE-INTERPHASE; METAL-ORGANIC FRAMEWORKS; ANODE MATERIALS; CURRENT COLLECTOR; IN-SITU; SCALABLE SYNTHESIS; SURFACE-STRUCTURE; HIGH-ENERGY; COMPOSITE; NANOPARTICLES;
D O I
10.3390/molecules28052079
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Silicon (Si) has been considered to be one of the most promising anode materials for high energy density lithium-ion batteries (LIBs) due to its high theoretical capacity, low discharge platform, abundant raw materials and environmental friendliness. However, the large volume changes, unstable solid electrolyte interphase (SEI) formation during cycling and intrinsic low conductivity of Si hinder its practical applications. Various modification strategies have been widely developed to enhance the lithium storage properties of Si-based anodes, including cycling stability and rate capabilities. In this review, recent modification methods to suppress structural collapse and electric conductivity are summarized in terms of structural design, oxide complexing and Si alloys, etc. Moreover, other performance enhancement factors, such as pre-lithiation, surface engineering and binders are briefly discussed. The mechanisms behind the performance enhancement of various Si-based composites characterized by in/ex situ techniques are also reviewed. Finally, we briefly highlight the existing challenges and future development prospects of Si-based anode materials.
引用
收藏
页数:36
相关论文
共 170 条
[1]   The formation and stability of the solid electrolyte interface on the graphite anode [J].
Agubra, Victor A. ;
Fergus, Jeffrey W. .
JOURNAL OF POWER SOURCES, 2014, 268 :153-162
[2]   Lithium-conducting covalent-organic-frameworks as artificial solid-electrolyte-interphase on silicon anode for high performance lithium ion batteries [J].
Ai, Qing ;
Fang, Qiyi ;
Liang, Jia ;
Xu, Xinyu ;
Zhai, Tianshu ;
Gao, Guanhui ;
Guo, Hua ;
Han, Guifang ;
Ci, Lijie ;
Lou, Jun .
NANO ENERGY, 2020, 72
[3]   The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling [J].
An, Seong Jin ;
Li, Jianlin ;
Daniel, Claus ;
Mohanty, Debasish ;
Nagpure, Shrikant ;
Wood, David L., III .
CARBON, 2016, 105 :52-76
[4]   Scalable Synthesis of Pore-Rich Si/C@C Core-Shell-Structured Microspheres for Practical Long-Life Lithium-Ion Battery Anodes [J].
An, Weili ;
He, Peng ;
Che, Zongzhou ;
Xiao, Chengmao ;
Guo, Eming ;
Pang, Chunlei ;
He, Xueqin ;
Ren, Jianguo ;
Yuan, Guohui ;
Du, Ning ;
Yang, Deren ;
Peng, Dong-Liang ;
Zhang, Qiaobao .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (08) :10308-10318
[5]   Two-Dimensional Silicon/Carbon from Commercial Alloy and CO2 for Lithium Storage and Flexible Ti3C2Tx MXene-Based Lithium-Metal Batteries [J].
An, Yongling ;
Tian, Yuan ;
Zhang, Yuchan ;
Wei, Chuanliang ;
Tan, Liwen ;
Zhang, Chenghui ;
Cui, Naxin ;
Xiong, Shenglin ;
Feng, Jinkui ;
Qian, Yitai .
ACS NANO, 2020, 14 (12) :17574-17588
[6]   Novel carbon-free niobium silicide/oxide nanocomposites for lithium-ion battery anodes [J].
Bae, Jaehan ;
Salunkhe, Tejaswi Tanaji ;
Hur, Jaehyun ;
Kim, Il Tae .
APPLIED MATERIALS TODAY, 2021, 22
[7]   Impact of the silicon particle size on the pre-lithiation behavior of silicon/carbon composite materials for lithium ion batteries [J].
Baermann, Peer ;
Diehl, Marcel ;
Goebel, Lea ;
Ruttert, Mirco ;
Nowak, Sascha ;
Winter, Martin ;
Placke, Tobias .
JOURNAL OF POWER SOURCES, 2020, 464
[8]   Li+ Transport and Mechanical Properties of Model Solid Electrolyte Interphases (SEI): Insight from Atomistic Molecular Dynamics Simulations [J].
Bedrov, Dmitry ;
Borodin, Oleg ;
Hooper, Justin B. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (30) :16098-16109
[9]   Prelithiation of silicon/graphite composite anodes: Benefits and mechanisms for long-lasting Li-Ion batteries [J].
Berhaut, Christopher L. ;
Dominguez, Diana Zapata ;
Tomasi, Daniel ;
Vincens, Christophe ;
Haon, Cedric ;
Reynier, Yvan ;
Porcher, Willy ;
Boudet, Nathalie ;
Blanc, Nils ;
Chahine, Gilbert A. ;
Tardif, Samuel ;
Pouget, Stephanie ;
Lyonnard, Sandrine .
ENERGY STORAGE MATERIALS, 2020, 29 :190-197
[10]   One-Step Synthesis of Multi-Core-Void@Shell Structured Silicon Anode for High-Performance Lithium-Ion Batteries [J].
Bi, Xiangyu ;
Tang, Tianyu ;
Shi, Xingwang ;
Ge, XuHui ;
Wu, Weiwei ;
Zhang, Zhiya ;
Wang, Jun .
SMALL, 2022, 18 (37)