Linear Codes and Linear Complementary Pairs of Codes Over a Non-Chain Ring

被引:0
|
作者
Cheng, Xiangdong [1 ]
Cao, Xiwang [1 ,2 ]
Qian, Liqin [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 211106, Jiangsu, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Key Lab Math Modelling & High Performance Comp Air, Nanjing 211106, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Linear code; constacyclic code; linear complementary pair; group code; LCD CODES;
D O I
10.1142/S012905412350003X
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let p be an odd prime number, q = p(m) for a positive integer m, let F(q )be the finite field with q elements and omega be a primitive element of Fq. We first give an orthogonal decomposition of the ring R = F-q + nu F-q, where nu(2) = a(3), and a = omega(2l )for a fixed integer l. In addition, Galois dual of a linear code over R is discussed. Meanwhile, constacyclic codes and cyclic codes over the ring R are investigated as well. Remarkably, we obtain that if linear codes C and D are a complementary pair, then the code C and the dual code D-&updatedExpOTTOM;E of D are equivalent to each other.
引用
收藏
页码:297 / 311
页数:15
相关论文
共 50 条
  • [31] A concatenated construction of linear complementary pair of codes
    Cem Güneri
    Ferruh Özbudak
    Elif Saçıkara
    Cryptography and Communications, 2019, 11 : 1103 - 1114
  • [32] Some results on linear codes over the ring Z4
    Li, Ping
    Guo, Xuemei
    Zhu, Shixin
    Kai, Xiaoshan
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2017, 54 (1-2) : 307 - 324
  • [33] On MDS linear complementary dual codes and entanglement-assisted quantum codes
    Jianfa Qian
    Lina Zhang
    Designs, Codes and Cryptography, 2018, 86 : 1565 - 1572
  • [34] On MDS linear complementary dual codes and entanglement-assisted quantum codes
    Qian, Jianfa
    Zhang, Lina
    DESIGNS CODES AND CRYPTOGRAPHY, 2018, 86 (07) : 1565 - 1572
  • [35] Linear codes over signed graphs
    Martinez-Bernal, Jose
    Valencia-Bucio, Miguel A.
    Villarreal, Rafael H.
    DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (02) : 273 - 296
  • [36] Linear Codes over Finite Chain Rings and Projective Hjelmslev Geometries
    Honold, Thomas
    Landjev, Ivan
    CODES OVER RINGS, 2009, 6 : 60 - +
  • [37] Linear codes over signed graphs
    José Martínez-Bernal
    Miguel A. Valencia-Bucio
    Rafael H. Villarreal
    Designs, Codes and Cryptography, 2020, 88 : 273 - 296
  • [38] Maximum Intersection of Linear Codes and Codes Equivalent to Linear
    Avgustinovich S.V.
    Gorkunov E.V.
    Journal of Applied and Industrial Mathematics, 2019, 13 (04) : 600 - 605
  • [39] Hulls of linear codes from simplex codes
    Xu, Guangkui
    Luo, Gaojun
    Cao, Xiwang
    Xu, Heqian
    DESIGNS CODES AND CRYPTOGRAPHY, 2024, 92 (04) : 1095 - 1112
  • [40] A Construction Method of Ternary Linear Complementary Dual Codes and Self-orthogonal Codes
    Li Ping
    Zhang Jiayuan
    Sun Zhonghua
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2022, 44 (11) : 4018 - 4024