PERSISTENCE OF DEGENERATE HYPERBOLIC LOWER-DIMENSIONAL INVARIANT TORI IN HAMILTONIAN SYSTEMS WITH BRUNO'S CONDITIONS

被引:0
作者
Yang, Xiaomei [1 ]
Xu, Junxiang [2 ]
机构
[1] Jinling Inst Technol, Coll Sci, Nanjing 211169, Peoples R China
[2] Southeast Univ, Sch Math, Nanjing 210096, Peoples R China
基金
中国国家自然科学基金;
关键词
Hamiltonian system; KAM iteration; non-degeneracy condition; de-generate equilibrium point; RESPONSE SOLUTIONS; BIFURCATIONS;
D O I
10.1090/proc/16184
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper proves the persistence of degenerate hyperbolic lower dimensional invariant tori in Hamiltonian systems with Bruno non-degeneracy conditions, whose frequency vector is a small dilation of the prescribed one. The proof is based on the stability of real roots of approximating real odd-order polynomials.
引用
收藏
页码:2435 / 2447
页数:13
相关论文
共 50 条
[41]   Perturbations of degenerate coisotropic invariant tori of Hamiltonian systems [J].
Parasyuk I.O. .
Ukrainian Mathematical Journal, 1998, 50 (1) :83-99
[42]   Persistence of the Non-twist Degenerate Lower Dimensional Invariant Torus in Reversible Systems [J].
Yang, Xiaomei ;
Xu, Junxiang .
QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (05)
[43]   Moser's theorem for hyperbolic-type degenerate lower tori in Hamiltonian system [J].
Jing, Tianqi ;
Si, Wen .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 299 :602-629
[44]   Persistence of Multiscale Degenerate Invariant Tori for Reversible Systems with Multiscale Degenerate Equilibrium Points [J].
Zhang, Dongfeng ;
Qu, Ru .
REGULAR & CHAOTIC DYNAMICS, 2022, 27 (06) :733-756
[45]   Persistence of lower dimensional hyperbolic tori for reversible system [J].
Kong, Yuedong ;
Xu, Junxiang .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 236 :408-421
[46]   Lower Dimensional Invariant Tori in the Regions of Instability for Nearly Integrable Hamiltonian Systems [J].
Chong-Qing Cheng .
Communications in Mathematical Physics, 1999, 203 :385-419
[47]   Degenerate lower dimensional tori in reversible systems [J].
Wang, Xiaocai ;
Xu, Junxiang ;
Zhang, Dongfeng .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 387 (02) :776-790
[48]   Existence of higher dimensional invariant tori for Hamiltonian systems [J].
Cong, FZ ;
Li, Y .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 222 (01) :255-267
[49]   Persistence of Multiscale Degenerate Invariant Tori for Reversible Systems with Multiscale Degenerate Equilibrium Points [J].
Dongfeng Zhang ;
Ru Qu .
Regular and Chaotic Dynamics, 2022, 27 :733-756
[50]   PERSISTENCE OF LOWER DIMENSIONAL ELLIPTIC INVARIANT TORI FOR A CLASS OF NEARLY INTEGRABLE REVERSIBLE SYSTEMS [J].
Wang, Xiaocai ;
Xu, Junxiang ;
Zhang, Dongfeng .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2010, 14 (03) :1237-1249