PERSISTENCE OF DEGENERATE HYPERBOLIC LOWER-DIMENSIONAL INVARIANT TORI IN HAMILTONIAN SYSTEMS WITH BRUNO'S CONDITIONS

被引:0
作者
Yang, Xiaomei [1 ]
Xu, Junxiang [2 ]
机构
[1] Jinling Inst Technol, Coll Sci, Nanjing 211169, Peoples R China
[2] Southeast Univ, Sch Math, Nanjing 210096, Peoples R China
基金
中国国家自然科学基金;
关键词
Hamiltonian system; KAM iteration; non-degeneracy condition; de-generate equilibrium point; RESPONSE SOLUTIONS; BIFURCATIONS;
D O I
10.1090/proc/16184
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper proves the persistence of degenerate hyperbolic lower dimensional invariant tori in Hamiltonian systems with Bruno non-degeneracy conditions, whose frequency vector is a small dilation of the prescribed one. The proof is based on the stability of real roots of approximating real odd-order polynomials.
引用
收藏
页码:2435 / 2447
页数:13
相关论文
共 50 条
[31]   Gevrey-Smoothness of Elliptic Lower Dimensional Invariant Tori in Hamiltonian Systems [J].
Wang, Bingfeng ;
Shi, Yanling ;
Jiang, Shunjun .
QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2018, 17 (02) :345-366
[32]   Persistence of Multiscale Degenerate Invariant Tori in Reversible Systems with Degenerate Frequency Mapping [J].
Yang, Xiaomei ;
Xu, Junxiang .
REGULAR & CHAOTIC DYNAMICS, 2024, 29 (04) :605-619
[33]   A Formal KAM Theorem for Hamiltonian Systems and Its Application to Hyperbolic Lower Dimensional Invariant Tori [J].
Li, Qi ;
Xu, Junxiang .
QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (02)
[34]   A Formal KAM Theorem for Hamiltonian Systems and Its Application to Hyperbolic Lower Dimensional Invariant Tori [J].
Qi Li ;
Junxiang Xu .
Qualitative Theory of Dynamical Systems, 2024, 23
[35]   Persistence of elliptic invariant tori for Hamiltonian systems [J].
Huang, QD ;
Cong, FZ ;
Li, Y .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 45 (02) :241-260
[36]   Persistence of invariant tori on submanifolds in Hamiltonian systems [J].
Chow, SN ;
Li, Y ;
Yi, Y .
JOURNAL OF NONLINEAR SCIENCE, 2002, 12 (06) :585-617
[37]   Gevrey-smoothness of elliptic lower-dimensional invariant tori in Hamiltonian systems under Russmann's non-degeneracy condition [J].
Zhang, Dongfeng ;
Xu, Junxiang .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 323 (01) :293-312
[38]   Gevrey-Smoothness of Elliptic Lower Dimensional Invariant Tori in Hamiltonian Systems [J].
Bingfeng Wang ;
Yanling Shi ;
Shunjun Jiang .
Qualitative Theory of Dynamical Systems, 2018, 17 :345-366
[39]   Persistence of hyperbolic-type degenerate invariant tori with prescribed frequencies in reversible systems [J].
Qu, Ru ;
Xu, Junxiang .
NONLINEARITY, 2025, 38 (01)
[40]   PERSISTENCE OF THE HYPERBOLIC LOWER DIMENSIONAL NON-TWIST INVARIANT TORUS IN A CLASS OF HAMILTONIAN SYSTEMS [J].
Wang, Lei ;
Yuan, Quan ;
Li, Jia .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2016, 15 (04) :1233-1250