PERSISTENCE OF DEGENERATE HYPERBOLIC LOWER-DIMENSIONAL INVARIANT TORI IN HAMILTONIAN SYSTEMS WITH BRUNO'S CONDITIONS

被引:0
作者
Yang, Xiaomei [1 ]
Xu, Junxiang [2 ]
机构
[1] Jinling Inst Technol, Coll Sci, Nanjing 211169, Peoples R China
[2] Southeast Univ, Sch Math, Nanjing 210096, Peoples R China
基金
中国国家自然科学基金;
关键词
Hamiltonian system; KAM iteration; non-degeneracy condition; de-generate equilibrium point; RESPONSE SOLUTIONS; BIFURCATIONS;
D O I
10.1090/proc/16184
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper proves the persistence of degenerate hyperbolic lower dimensional invariant tori in Hamiltonian systems with Bruno non-degeneracy conditions, whose frequency vector is a small dilation of the prescribed one. The proof is based on the stability of real roots of approximating real odd-order polynomials.
引用
收藏
页码:2435 / 2447
页数:13
相关论文
共 50 条
[11]   The Persistence of Degenerate Lower-Dimensional Tori in Reversible Systems with a Degenerate Normal Equilibrium Point [J].
Ru Qu ;
DongFeng Zhang .
Journal of Dynamics and Differential Equations, 2023, 35 :2237-2259
[12]   LOWER-DIMENSIONAL INVARIANT TORI FOR A CLASS OF DEGENERATE REVERSIBLE SYSTEMS UNDER SMALL PERTURBATIONS [J].
Yang, Xiaomei ;
Xu, Junxiang .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2025, 153 (01) :259-267
[13]   On Elliptic Lower-Dimensional Invariant Tori with Prescribed Frequencies in Hamiltonian Systems with Small Parameters [J].
Zou, Hanru ;
Xu, Junxiang .
REGULAR & CHAOTIC DYNAMICS, 2024, 29 (04) :583-604
[14]   Persistence of hyperbolic invariant tori for Hamiltonian systems [J].
Huang, QD ;
Cong, FZ ;
Li, Y .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 164 (02) :355-379
[15]   Persistence of lower dimensional degenerate invariant tori with prescribed frequencies in Hamiltonian systems with small parameter [J].
Xu, Junxiang .
NONLINEARITY, 2021, 34 (12) :8192-8247
[16]   Birkhoff lower-dimensional tori in Hamiltonian systems [J].
Wang, SL ;
Cheng, CQ .
CHINESE SCIENCE BULLETIN, 1997, 42 (22) :1866-1870
[17]   Birkhoff lower-dimensional tori in Hamiltonian systems [J].
WANG Shaoli and CHENG ChongqingDepartment of Mathematics Nanjing University Nanjing China .
Chinese Science Bulletin, 1997, (22) :1866-1870
[18]   Persistence of lower dimensional invariant tori for nearly integrable Hamiltonian systems [J].
Xu, JX .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 52 (02) :383-403
[19]   On the Persistence of Lower-Dimensional Tori in Reversible Systems with Hyperbolic-Type Degenerate Equilibrium Point Under Small Perturbations [J].
Wang, Xiaocai ;
Cao, Xiaofei .
ACTA APPLICANDAE MATHEMATICAE, 2021, 173 (01)
[20]   On the Persistence of Lower-Dimensional Tori in Reversible Systems with Hyperbolic-Type Degenerate Equilibrium Point Under Small Perturbations [J].
Xiaocai Wang ;
Xiaofei Cao .
Acta Applicandae Mathematicae, 2021, 173