Construction and application of the genome-scale metabolic model of Streptomyces radiopugnans

被引:5
|
作者
Zhang, Zhidong [1 ,2 ]
Guo, Qi [1 ]
Qian, Jinyi [3 ]
Ye, Chao [3 ]
Huang, He [1 ,3 ]
机构
[1] Nanjing Technol Univ, Coll Biotechnol & Pharmaceut Engn, Nanjing, Peoples R China
[2] Xinjiang Acad Agr Sci, Inst Microbiol, Urumqi, Peoples R China
[3] Nanjing Normal Univ, Sch Food Sci & Pharmaceut Engn, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
geosmin; Streptomyces radiopugnans; genome-scale metabolic model; culture condition optimization; metabolic engineering; SP NOV; GEOSMIN; BIOSYNTHESIS; 2-METHYLISOBORNEOL; RECONSTRUCTION; GENERATION; SOIL;
D O I
10.3389/fbioe.2023.1108412
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Geosmin is one of the most common earthy-musty odor compounds, which is mainly produced by Streptomyces. Streptomyces radiopugnans was screened in radiation-polluted soil, which has the potential to overproduce geosmin. However, due to the complex cellular metabolism and regulation mechanism, the phenotypes of S. radiopugnans were hard to investigate. A genome-scale metabolic model of S. radiopugnans named iZDZ767 was constructed. Model iZDZ767 involved 1,411 reactions, 1,399 metabolites, and 767 genes; its gene coverage was 14.1%. Model iZDZ767 could grow on 23 carbon sources and five nitrogen sources, which achieved 82.1% and 83.3% prediction accuracy, respectively. For the essential gene prediction, the accuracy was 97.6%. According to the simulation of model iZDZ767, D-glucose and urea were the best for geosmin fermentation. The culture condition optimization experiments proved that with D-glucose as the carbon source and urea as the nitrogen source (4 g/L), geosmin production could reach 581.6 ng/L. Using the OptForce algorithm, 29 genes were identified as the targets of metabolic engineering modification. With the help of model iZDZ767, the phenotypes of S. radiopugnans could be well resolved. The key targets for geosmin overproduction could also be identified efficiently.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Reconstruction and Analysis of a Genome-Scale Metabolic Model of Acinetobacter lwoffii
    Xu, Nan
    Zuo, Jiaojiao
    Li, Chenghao
    Gao, Cong
    Guo, Minliang
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (17)
  • [42] A curated genome-scale metabolic model of Bordetella pertussis metabolism
    Fyson, Nick
    King, Jerry
    Belcher, Thomas
    Preston, Andrew
    Colijn, Caroline
    PLOS COMPUTATIONAL BIOLOGY, 2017, 13 (07)
  • [43] Applications of genome-scale metabolic reconstructions
    Oberhardt, Matthew A.
    Palsson, Bernhard O.
    Papin, Jason A.
    MOLECULAR SYSTEMS BIOLOGY, 2009, 5
  • [44] Genome-scale modeling for metabolic engineering
    Simeonidis, Evangelos
    Price, Nathan D.
    JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2015, 42 (03) : 327 - 338
  • [45] Randomizing Genome-Scale Metabolic Networks
    Samal, Areejit
    Martin, Olivier C.
    PLOS ONE, 2011, 6 (07):
  • [46] Plant genome-scale metabolic networks
    Gerlin, Leo
    Frainay, Clement
    Jourdan, Fabien
    Baroukh, Caroline
    Prigent, Sylvain
    PLANT METABOLOMICS IN FULL SWING, 2021, 98 : 237 - 270
  • [47] Ustilago maydis Metabolic Characterization and Growth Quantification with a Genome-Scale Metabolic Model
    Liebal, Ulf W.
    Ullmann, Lena
    Lieven, Christian
    Kohl, Philipp
    Wibberg, Daniel
    Zambanini, Thiemo
    Blank, Lars M.
    JOURNAL OF FUNGI, 2022, 8 (05)
  • [48] Improving Gibberellin GA3 Production with the Construction of a Genome-Scale Metabolic Model of Fusarium fujikuroi
    Li, Ya-Wen
    Qian, Jin-Yi
    Huang, Jia-Cong
    Guo, Dong-Sheng
    Nie, Zhi-Kui
    Ye, Chao
    Shi, Tian-Qiong
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2023, 71 (48) : 18890 - 18897
  • [49] Identification of essential genes by transposon insertion sequencing and genome-scale metabolic model construction in Streptococcus suis
    Zhang, Yongqing
    Gong, Ruotong
    Liang, Menglei
    Zhang, Liangsheng
    Liu, Xiujian
    Zeng, Jingzi
    Yan, Mengli
    Qiu, Dexin
    Zhou, Rui
    Huang, Qi
    MICROBIOLOGY SPECTRUM, 2025,
  • [50] Improving Gibberellin GA3 Production with the Construction of a Genome-Scale Metabolic Model of Fusarium fujikuroi
    Li, Ya-Wen
    Qian, Jin-Yi
    Huang, Jia-Cong
    Guo, Dong-Sheng
    Nie, Zhi-Kui
    Ye, Chao
    Shi, Tian-Qiong
    Journal of Agricultural and Food Chemistry, 2023, 71 (48): : 18890 - 18897