Solar Hot Water Systems Using Latent Heat Thermal Energy Storage: Perspectives and Challenges

被引:9
|
作者
Modi, Nishant [1 ]
Wang, Xiaolin [1 ]
Negnevitsky, Michael [1 ]
机构
[1] Univ Tasmania, Sch Engn, Hobart, Tas 7005, Australia
关键词
heat pipe; latent heat thermal energy storage; phase-change material; NEPCM; solar energy; solar water heating; PHASE-CHANGE MATERIAL; PCM STORAGE; PERFORMANCE; COLLECTOR; DESIGN; TANK; ENHANCEMENT; EXCHANGER; FINS; DHW;
D O I
10.3390/en16041969
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Domestic water heating accounts for 15% to 27% of the total energy consumption in buildings in Australia. Over the past two decades, the latent heat thermal energy storage (LHTES) system has been widely investigated as a way to reduce fossil fuel consumption and increase the share of renewable energy in solar water heating. However, the research has concentrated on the geometric optimisation of the LHTES heat exchanger for the past few years, and this might not be sufficient for commercialisation. Moreover, recent review papers mainly discussed the development of a particular heat-transfer improvement technique. This paper presents perspectives on various solar hot water systems using LHTES to shift focus to on-demand performance studies, as well as structure optimisation studies for faster commercialisation. Future challenges are also discussed. Since the topic is an active area of research, this paper focuses on references that showcase the overall performance of LHTES-assisted solar hot water systems and cannot include all published work in the discussion. This perspective paper provides directional insights to researchers for developing an energy-efficient solar hot water system using LHTES.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Thermal analysis of a rectangular latent heat storage unit with stearic acid/paraffin wax composite PCM for solar thermal energy storage systems
    Saini, Dinesh Kumar
    Muniyappa, Chandrashekara
    Yadav, Avadhesh
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2025, 47 (01) : 4279 - 4296
  • [42] Melting characteristics of a longitudinally finned-tube horizontal latent heat thermal energy storage system
    Modi, Nishant
    Wang, Xiaolin
    Negnevitsky, Michael
    Cao, Feng
    SOLAR ENERGY, 2021, 230 : 333 - 344
  • [43] Charging an inclined PCM storage exposed to time-varying solar radiation: Latent heat thermal energy storage
    Zhang, Lei
    Ahmad, Sayed Fayaz
    Nutakki, Tirumala Uday Kumar
    Agrawal, Manoj Kumar
    Ghfar, Ayman A.
    Chauhdary, Sohaib Tahir
    Youshanlouei, Hossein Mehdizadeh
    JOURNAL OF ENERGY STORAGE, 2024, 90
  • [44] Modeling and simulation of nano-enriched latent heat thermal storage system for concentrated solar energy
    Ismail, M. M.
    Dincer, I.
    Bicer, Y.
    JOURNAL OF ENERGY STORAGE, 2024, 78
  • [45] A comparison study of different latent thermal energy storage roles in heating systems with heat pump
    Torbarina, Fran
    Lenic, Kristian
    Trp, Anica
    Wolf, Igor
    PROCEEDINGS OF THE INTERNATIONAL RENEWABLE ENERGY STORAGE AND SYSTEMS CONFERENCE, IRES 2023, 2024, 32 : 195 - 204
  • [46] Optimizing fin design for enhanced melting performance in latent heat thermal energy storage systems
    Wang, Yijun
    Zadeh, Peyman Gholamali
    Duong, Xuan Quang
    Chung, Jae Dong
    JOURNAL OF ENERGY STORAGE, 2023, 73
  • [47] Melting enhancement in vertical triplex-tube latent heat thermal energy storage system using BeO nanoparticles and internal fins
    Sattinova, Zamira
    Assilbekov, Bakytzhan
    Pal, Animesh
    Bekenov, Tassybek
    Saha, Bidyut Baran
    RESULTS IN ENGINEERING, 2025, 25
  • [48] Energy storage in latent heat storage of a solar thermal system using a novel flat spiral tube heat exchanger
    Ardahaie, S. Saedi
    Hosseini, M. J.
    Ranjbar, A. A.
    Rahimi, M.
    APPLIED THERMAL ENGINEERING, 2019, 159
  • [49] Three-dimensional simulation of high temperature latent heat thermal energy storage system assisted by finned heat pipes
    Tiari, Saeed
    Qiu, Songgang
    ENERGY CONVERSION AND MANAGEMENT, 2015, 105 : 260 - 271
  • [50] Thermal analytical model of latent thermal storage with heat pipe heat exchanger for concentrated solar power
    Jung, Eui Guk
    Boo, Joon Hong
    SOLAR ENERGY, 2014, 102 : 318 - 332