Suppression of RBFox2 by Multiple MiRNAs in Pressure Overload-Induced Heart Failure

被引:7
|
作者
Gu, Mingyao [1 ]
Zhao, Yuying [1 ]
Wang, Hong [2 ]
Cheng, Wanwen [3 ]
Liu, Jie [1 ,3 ]
Ouyang, Kunfu [2 ]
Wei, Chaoliang [1 ]
机构
[1] Shenzhen Univ, Hlth Sci Ctr, Shenzhen Key Lab Metab & Cardiovasc Homeostasis, Shenzhen 518060, Peoples R China
[2] Peking Univ, Shenzhen Hosp, Dept Cardiovasc Surg, Shenzhen 518036, Peoples R China
[3] Shenzhen Univ, Hlth Sci Ctr, Dept Pathophysiol, Shenzhen 518060, Peoples R China
关键词
RBFox2; miRNAs; E-C coupling; alternative splicing; heart failure; CARDIAC-HYPERTROPHY; GENE-EXPRESSION; DILATED CARDIOMYOPATHY; MICROARRAY ANALYSIS; MICRORNA SIGNATURE; REGULATOR; RNA; MODELS; LET-7; PATHOPHYSIOLOGY;
D O I
10.3390/ijms24021283
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Heart failure is the final stage of various cardiovascular diseases and seriously threatens human health. Increasing mediators have been found to be involved in the pathogenesis of heart failure, including the RNA binding protein RBFox2. It participates in multiple aspects of the regulation of cardiac function and plays a critical role in the process of heart failure. However, how RBFox2 itself is regulated remains unclear. Here, we dissected transcriptomic signatures, including mRNAs and miRNAs, in a mouse model of heart failure after TAC surgery. A global analysis showed that an asymmetric alternation in gene expression and a large-scale upregulation of miRNAs occurred in heart failure. An association analysis revealed that the latter not only contributed to the degradation of numerous mRNA transcripts, but also suppressed the translation of key proteins such as RBFox2. With the aid of Ago2 CLIP-seq data, luciferase assays verified that RBFox2 was targeted by multiple miRNAs, including Let-7, miR-16, and miR-200b, which were significantly upregulated in heart failure. The overexpression of these miRNAs suppressed the RBFox2 protein and its downstream effects in cardiomyocytes, which was evidenced by the suppressed alternative splicing of the Enah gene and impaired E-C coupling via the repression of the Jph2 protein. The inhibition of Let-7, the most abundant miRNA family targeting RBFox2, could restore the RBFox2 protein as well as its downstream effects in dysfunctional cardiomyocytes induced by ISO treatment. In all, these findings revealed the molecular mechanism leading to RBFox2 depression in heart failure, and provided an approach to rescue RBFox2 through miRNA inhibition for the treatment of heart failure.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Repression of the Central Splicing Regulator RBFox2 Is Functionally Linked to Pressure Overload-Induced Heart Failure
    Wei, Chaoliang
    Qiu, Jinsong
    Zhou, Yu
    Xue, Yuanchao
    Hu, Jing
    Ouyang, Kunfu
    Banerjee, Indroneal
    Zhang, Caimei
    Chen, Biyi
    Li, Hairi
    Chen, Ju
    Song, Long-Sheng
    Fu, Xiang-Dong
    CELL REPORTS, 2015, 10 (09): : 1521 - 1533
  • [2] Hypoxia Attenuates Pressure Overload-Induced Heart Failure
    Froese, Natali
    Szaroszyk, Malgorzata
    Galuppo, Paolo
    Visker, Joseph R.
    Werlein, Christopher
    Korf-Klingebiel, Mortimer
    Berliner, Dominik
    Reboll, Marc R.
    Hamouche, Rana
    Gegel, Simona
    Wang, Yong
    Hofmann, Winfried
    Tang, Ming
    Geffers, Robert
    Wende, Adam R.
    Kuehnel, Mark P.
    Jonigk, Danny D.
    Hansmann, Georg
    Wollert, Kai C.
    Abel, E. Dale
    Drakos, Stavros G.
    Bauersachs, Johann
    Riehle, Christian
    JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2024, 13 (03):
  • [3] Rescue of Pressure Overload-Induced Heart Failure by Estrogen Therapy
    Iorga, Andrea
    Li, Jingyuan
    Sharma, Salil
    Umar, Soban
    Bopassa, Jean C.
    Nadadur, Rangarajan D.
    Centala, Alexander
    Ren, Shuxun
    Saito, Tomoaki
    Toro, Ligia
    Wang, Yibin
    Stefani, Enrico
    Eghbali, Mansoureh
    JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2016, 5 (01): : 1 - 12
  • [4] Effects of Pitavastatin on Pressure Overload-Induced Heart Failure in Mice
    Kameda, Yoshihito
    Hasegawa, Hiroshi
    Kubota, Akihiko
    Tadokoro, Hiroyuki
    Kobayashi, Yoshio
    Komuro, Issei
    Takano, Hiroyuki
    CIRCULATION JOURNAL, 2012, 76 (05) : 1159 - 1168
  • [5] Rethinking Protein Acetylation in Pressure Overload-Induced Heart Failure
    Scott, Iain
    Sack, Michael N.
    CIRCULATION RESEARCH, 2020, 127 (08) : 1109 - 1111
  • [6] EFFECT OF PITAVASTATIN ON PRESSURE OVERLOAD-INDUCED HEART FAILURE IN MICE
    Kameda, Yoshihito
    Hasegawa, Hiroshi
    Kubota, Akihiko
    Tadokoro, Hiroyuki
    Kobayashi, Yoshio
    Takano, Hiroyuki
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2012, 59 (13) : E1062 - E1062
  • [7] Targeting the adipose tissue: heart crosstalk in pressure overload-induced heart failure
    Tual-Chalot, Simon
    Stellos, Konstantinos
    CARDIOVASCULAR RESEARCH, 2022, 118 (08) : 1854 - 1856
  • [8] Effects of MitoQ on Mitochondrial Function in Pressure Overload-Induced Heart Failure
    O'Connell, Kelly Anne
    Dabkowski, Erinne R.
    Faustino, Rogerio
    Xu, Wenhong
    Galvao, Tatiana
    Stanley, William C.
    FASEB JOURNAL, 2012, 26
  • [9] Regulation of apoptotic genes and markers in pressure overload-induced heart failure
    Philipp, S
    Höhnel, K
    Hamet, P
    Dietz, R
    Willenbrock, R
    Lutz, J
    EUROPEAN HEART JOURNAL, 2001, 22 : 398 - 398
  • [10] CXCL10 regulates pressure overload-induced heart failure
    Souza-Neto, Fernando
    Le, Preston
    Alamgir, Ashab
    van Berlo, Jop H.
    PHYSIOLOGY, 2024, 39