Effects of SiC on the Microstructure, Densification, Hardness and Wear Performance of TiB2 Ceramic Matrix Composite Consolidated Via Spark Plasma Sintering

被引:8
|
作者
Oguntuyi, Samson D. [1 ,4 ]
Shongwe, Mxolisi B. [1 ]
Tshabalala, Lerato [2 ]
Johnson, Oluwagbenga T. [3 ,4 ]
Malatji, Nicholus [1 ]
机构
[1] Tshwane Univ Technol, Dept Chem Met & Mat Engn, Private Bag X680, ZA-0001 Pretoria, South Africa
[2] Council Sci & Ind Res CSIR, Natl Laser Ctr, POB 395, ZA-0001 Pretoria, South Africa
[3] Univ Namibia, Dept Min & Met Engn, Private Bag 13301, Ongwediva, Namibia
[4] Univ Johannesburg, Fac Engn & Built Environm, Sch Min Met & Chem Engn, Dept Met, POB 524, Johannesburg, South Africa
基金
新加坡国家研究基金会;
关键词
Microstructure; Densification; Hardness; Wear performance; TiB2; SiC; MECHANICAL-PROPERTIES; FRACTURE-TOUGHNESS; SILICON-NITRIDE; PARTICLE-SIZE; BORON-CARBIDE; BEHAVIOR; ZIRCONIUM; PARAMETERS; DIBORIDE; GROWTH;
D O I
10.1007/s13369-022-07026-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Monolithic TiB2 are known to have a good combination of densification and hardness, which are sometimes helpful but limited in application. However, their usage in service at elevated temperatures such as in thermal power plants, cutting tools, tribological purposes (mechanical seals, blast nozzles, wheel dressing tools), etc. leads to catastrophic failure. Hence, the introduction of sintering additives in the TiB2 matrix greatly influences the sinterability and properties (fracture toughness, wear resistance, etc.) of the resulting composite needed to meet the requirement for various industrial applications. In this study, the influence of SiC as sintering additives on the microstructure, densification, hardness and wear performance of TiB2 ceramic was observed. Hence, TiB2, TiB2-10wt%SiC and TiB2-20wt%SiC were sintered at 1850 degrees C for 10 min under 50 MPa. The impacts of SiC on the TiB2 were observed to improve the microstructure and correspondingly improve the densification and mechanical properties, most especially with the composite with 20wt% SiC. Combined excellent densification, hardness and fracture toughness of 99.5%, 25.5 GPa, 4.5 MPa.m(1/2) were achieved, respectively, for TiB2-20wt%SiC. Diverse in-situ phase and microstructural alterations were detected in the sintered composites. It was discovered that the in-situ phase of TiC serves as the contributing factor to the enhanced features of the composites. Moreover, the coefficient of friction and wear performance outcomes of the synthesized composites described a decreased coefficient with an enhanced wear resistance via the increasing SiC particulate. However, applying the load from 10 to 20 N increased the wear rates.
引用
收藏
页码:2889 / 2903
页数:15
相关论文
共 50 条
  • [21] Mechanical properties and microstructure of Al/(TiC + TiB2) composite fabricated by spark plasma sintering
    Hadian, M.
    Shahrajabian, H.
    Rafiei, M.
    CERAMICS INTERNATIONAL, 2019, 45 (09) : 12088 - 12092
  • [22] Effect of TiB2 content on microstructure and mechanical properties of SiC composite ceramics by solid-state spark plasma sintering
    Liu, Jiangao
    Li, Yang
    Cheng, Changgui
    Li, Wei
    JOURNAL OF THE AUSTRALIAN CERAMIC SOCIETY, 2024, 60 (03) : 971 - 978
  • [23] Microstructure and Properties of TiB2 Composites Produced by Spark Plasma Sintering with the Addition of Ti5Si3
    Twardowska, Agnieszka
    Podsiadlo, Marcin
    Sulima, Iwona
    Bryla, Krzysztof
    Hyjek, Pawel
    MATERIALS, 2021, 14 (14)
  • [24] Effects of TiB2 Particles on the Microstructure Evolution and Mechanical Properties of B4C/TiB2 Ceramic Composite
    Niu, Haiyan
    Zhu, Yu
    You, Ning
    Wang, Yangwei
    Cheng, Huanwu
    Luo, Dujun
    Tang, Mengying
    Zhang, Jiamin
    MATERIALS, 2021, 14 (18)
  • [25] Microstructure and densification of ZrB2-SiC composites prepared by spark plasma sintering
    Akin, Ipek
    Hotta, Mikinori
    Sahin, Filiz Cinar
    Yucel, Onuralp
    Goller, Gultekin
    Goto, Takashi
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2009, 29 (11) : 2379 - 2385
  • [26] Study of steel matrix composite samples with 12%Wt TiB2 produced by spark plasma sintering
    Salustre, Mariane Gonsalves de Miranda
    Gonoring, Tiago Bristt
    Martins, Joao Batista Ribeiro
    Lopes, Haimon Diniz Alves
    Orlando, Marcos Tadeu D'Azeredo
    MATERIALS CHEMISTRY AND PHYSICS, 2023, 302
  • [27] Spark plasma sintering of B4C ceramics: The effects of milling medium and TiB2 addition
    Xu, Changming
    Cai, Yanbing
    Flodstrom, Katarina
    Li, Zheshen
    Esmaeilzadeh, Saeid
    Zhang, Guo-Jun
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2012, 30 (01) : 139 - 144
  • [28] The Microstructure, Mechanical, and Friction-Wear Properties of Boron Carbide-Based Composites with TiB2 and SiC Formed In Situ by Reactive Spark Plasma Sintering
    Twardowska, Agnieszka
    Kowalski, Marcin
    MATERIALS, 2024, 17 (10)
  • [29] The Fabrication and Characterization of a TiB2/Ni Composite Using Spark Plasma Sintering
    Wang, Miao
    Wang, Wen-xian
    Zhou, Jun
    Chen, Hong-sheng
    Chang, Ze-xin
    TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2018, 71 (10) : 2349 - 2360
  • [30] Friction and Wear of the TiB2-30 vol.% B4C Composite Consolidated in Spark Plasma Sintering
    Zamula, M. V.
    Varchenko, V. T.
    Umerova, S. A.
    Zgalat-Lozinskii, O. B.
    Ragulya, A. V.
    POWDER METALLURGY AND METAL CERAMICS, 2017, 55 (9-10) : 567 - 573