Artificial intelligence and machine-learning approaches in structure and ligand-based discovery of drugs affecting central nervous system

被引:17
作者
Gautam, Vertika [1 ,2 ]
Gaurav, Anand [3 ]
Masand, Neeraj [4 ]
Lee, Vannajan Sanghiran [1 ]
Patil, Vaishali M. [5 ]
机构
[1] Univ Malaya, Fac Sci, Kuala Lumpur 50603, Malaysia
[2] GLA Univ, Inst Pharmaceut Res, Mathura 281406, Uttar Pradesh, India
[3] UCSI Univ, Fac Pharmaceut Sci, Jalan Menara Gading, Kuala Lumpur 56000, Malaysia
[4] Lala Lajpat Rai Mem Med Coll, Dept Pharm, Meerut 250004, Uttar Pradesh, India
[5] Delhi NCR, KIET Sch Pharm, Dept Pharmaceut Chem, KIET Grp Inst, Ghaziabad 201206, Uttar Pradesh, India
关键词
Artificial intelligence; Machine learning; Deep learning; Drug discovery; CNS; Neurological diseases; Neurodegenerative diseases; Neural networks; BINDING-AFFINITY PREDICTION; SUPPORT VECTOR MACHINE; RECEPTOR LIGANDS; BIG DATA; SCORING FUNCTION; NEURAL-NETWORKS; MOLECULAR DESCRIPTORS; MEDICINAL CHEMISTRY; ALZHEIMERS-DISEASE; RANDOM FOREST;
D O I
10.1007/s11030-022-10489-3
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
CNS disorders are indications with a very high unmet medical needs, relatively smaller number of available drugs, and a subpar satisfaction level among patients and caregiver. Discovery of CNS drugs is extremely expensive affair with its own unique challenges leading to extremely high attrition rates and low efficiency. With explosion of data in information age, there is hardly any aspect of life that has not been touched by data driven technologies such as artificial intelligence (AI) and machine learning (ML). Drug discovery is no exception, emergence of big data via genomic, proteomic, biological, and chemical technologies has driven pharmaceutical giants to collaborate with AI oriented companies to revolutionise drug discovery, with the goal of increasing the efficiency of the process. In recent years many examples of innovative applications of AI and ML techniques in CNS drug discovery has been reported. Research on therapeutics for diseases such as schizophrenia, Alzheimer's and Parkinsonism has been provided with a new direction and thrust from these developments. AI and ML has been applied to both ligand-based and structure-based drug discovery and design of CNS therapeutics. In this review, we have summarised the general aspects of AI and ML from the perspective of drug discovery followed by a comprehensive coverage of the recent developments in the applications of AI/ML techniques in CNS drug discovery. [GRAPHICS] .
引用
收藏
页码:959 / 985
页数:27
相关论文
共 347 条
[21]   Selected concepts and investigations in compound classification, molecular descriptor analysis, and virtual screening [J].
Bajorath, J .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2001, 41 (02) :233-245
[22]  
Ballester PJ, 2012, LECT NOTES COMPUT SC, V7632, P14, DOI 10.1007/978-3-642-34123-6_2
[23]   A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking [J].
Ballester, Pedro J. ;
Mitchell, John B. O. .
BIOINFORMATICS, 2010, 26 (09) :1169-1175
[24]   UniProt: a worldwide hub of protein knowledge [J].
Bateman, Alex ;
Martin, Maria-Jesus ;
Orchard, Sandra ;
Magrane, Michele ;
Alpi, Emanuele ;
Bely, Benoit ;
Bingley, Mark ;
Britto, Ramona ;
Bursteinas, Borisas ;
Busiello, Gianluca ;
Bye-A-Jee, Hema ;
Da Silva, Alan ;
De Giorgi, Maurizio ;
Dogan, Tunca ;
Castro, Leyla Garcia ;
Garmiri, Penelope ;
Georghiou, George ;
Gonzales, Daniel ;
Gonzales, Leonardo ;
Hatton-Ellis, Emma ;
Ignatchenko, Alexandr ;
Ishtiaq, Rizwan ;
Jokinen, Petteri ;
Joshi, Vishal ;
Jyothi, Dushyanth ;
Lopez, Rodrigo ;
Luo, Jie ;
Lussi, Yvonne ;
MacDougall, Alistair ;
Madeira, Fabio ;
Mahmoudy, Mahdi ;
Menchi, Manuela ;
Nightingale, Andrew ;
Onwubiko, Joseph ;
Palka, Barbara ;
Pichler, Klemens ;
Pundir, Sangya ;
Qi, Guoying ;
Raj, Shriya ;
Renaux, Alexandre ;
Lopez, Milagros Rodriguez ;
Saidi, Rabie ;
Sawford, Tony ;
Shypitsyna, Aleksandra ;
Speretta, Elena ;
Turner, Edward ;
Tyagi, Nidhi ;
Vasudev, Preethi ;
Volynkin, Vladimir ;
Wardell, Tony .
NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) :D506-D515
[25]   UniProt: the universal protein knowledgebase [J].
Bateman, Alex ;
Martin, Maria Jesus ;
O'Donovan, Claire ;
Magrane, Michele ;
Alpi, Emanuele ;
Antunes, Ricardo ;
Bely, Benoit ;
Bingley, Mark ;
Bonilla, Carlos ;
Britto, Ramona ;
Bursteinas, Borisas ;
Bye-A-Jee, Hema ;
Cowley, Andrew ;
Da Silva, Alan ;
De Giorgi, Maurizio ;
Dogan, Tunca ;
Fazzini, Francesco ;
Castro, Leyla Garcia ;
Figueira, Luis ;
Garmiri, Penelope ;
Georghiou, George ;
Gonzalez, Daniel ;
Hatton-Ellis, Emma ;
Li, Weizhong ;
Liu, Wudong ;
Lopez, Rodrigo ;
Luo, Jie ;
Lussi, Yvonne ;
MacDougall, Alistair ;
Nightingale, Andrew ;
Palka, Barbara ;
Pichler, Klemens ;
Poggioli, Diego ;
Pundir, Sangya ;
Pureza, Luis ;
Qi, Guoying ;
Rosanoff, Steven ;
Saidi, Rabie ;
Sawford, Tony ;
Shypitsyna, Aleksandra ;
Speretta, Elena ;
Turner, Edward ;
Tyagi, Nidhi ;
Volynkin, Vladimir ;
Wardell, Tony ;
Warner, Kate ;
Watkins, Xavier ;
Zaru, Rossana ;
Zellner, Hermann ;
Xenarios, Ioannis .
NUCLEIC ACIDS RESEARCH, 2017, 45 (D1) :D158-D169
[26]   A Structure-Based Drug Discovery Paradigm [J].
Batool, Maria ;
Ahmad, Bilal ;
Choi, Sangdun .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (11)
[27]   GWAS Central: a comprehensive resource for the discovery and comparison of genotype and phenotype data from genome-wide association studies [J].
Beck, Tim ;
Shorter, Tom ;
Brookes, Anthony J. .
NUCLEIC ACIDS RESEARCH, 2020, 48 (D1) :D933-D940
[28]   Screening for dihydrofolate reductase inhibitors using MOLPRINT 2D, a fast fragment-based method employing the naive Bayesian classifier: Limitations of the descriptor and the importance of balanced chemistry in training and test sets [J].
Bender, A ;
Mussa, HY ;
Glen, RC .
JOURNAL OF BIOMOLECULAR SCREENING, 2005, 10 (07) :658-666
[29]   Marrying chemistry with biology by combining on-chip solution-based combinatorial synthesis and cellular screening [J].
Benz, Maximilian ;
Molla, Mijanur R. ;
Boeser, Alexander ;
Rosenfeld, Alisa ;
Levkin, Pavel A. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[30]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242