Boundary-free kernel-smoothed goodness-of-fit tests for data on general interval

被引:4
作者
Fauzia, Rizky Reza [1 ]
Maesono, Yoshihiko [2 ]
机构
[1] Parahyangan Catholic Univ, Fac Informat Technol & Sci, Jalan Ciumbuleuit 49, Bandung, West Java, Indonesia
[2] Chuo Univ, Fac Sci & Engn, Tokyo, Japan
关键词
Bijective function; Cramé r-von Mises test; Distribution function; Goodness-of-fit test; Kernel smoothing; Kolmogorov-Smirnov test; Transformation;
D O I
10.1080/03610918.2021.1894336
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose kernel-type smoothed Kolmogorov-Smirnov and Cramer-von Mises tests for data on general interval, using bijective transformations. Though not as severe as in the kernel density estimation, utilizing naive kernel method directly to those particular tests will result in boundary problem as well. This happens mostly because the value of the naive kernel distribution function estimator is still larger than 0 (or less than 1) when it is evaluated at the boundary points. This situation can increase the errors of the tests especially the second-type error. In this article, we use bijective transformations to eliminate the boundary problem. Some numerical studies illustrating the estimator and the tests' performances will be presented in the last part of this article.
引用
收藏
页码:1962 / 1978
页数:17
相关论文
共 30 条
[1]  
ABDOUS B, 1993, COMMUN STAT THEORY, V22
[2]   A Kolmogorov-Smirnov test for the molecular clock based on Bayesian ensembles of phylogenies [J].
Antoneli, Fernando ;
Passos, Fernando M. ;
Lopes, Luciano R. ;
Briones, Marcelo R. S. .
PLOS ONE, 2018, 13 (01)
[3]   A NOTE ON THE ESTIMATION OF A DISTRIBUTION FUNCTION AND QUANTILES BY A KERNEL-METHOD [J].
AZZALINI, A .
BIOMETRIKA, 1981, 68 (01) :326-328
[4]   Cramer-von Mises distance: probabilistic interpretation, confidence intervals, and neighbourhood-of-model validation [J].
Baringhaus, L. ;
Henze, N. .
JOURNAL OF NONPARAMETRIC STATISTICS, 2017, 29 (02) :167-188
[5]   Test for model selection using Cramer-von Mises distance in a fixed design regression setting [J].
Chen, Hong ;
Doering, Maik ;
Jensen, Uwe .
ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2018, 102 (04) :505-535
[6]  
COWLING A, 1996, J ROY STAT SOC B MET, V58
[7]   A rank-based Cramer-von-Mises-type test for two samples [J].
Curry, Jamye ;
Dang, Xin ;
Sang, Hailin .
BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2019, 33 (03) :425-454
[8]  
Evans DL, 2017, INT SER OPER RES MAN, V247, P165, DOI 10.1007/978-3-319-43317-2_13
[9]  
Falk M., 1983, STAT NEERL, V37, P73, DOI [DOI 10.1111/J.1467-9574.1983.TB00802.X, 10.1111/j.1467-9574.1983.tb00802.x]
[10]   TWO-SAMPLE KOLMOGOROV-SMIRNOV-TYPE TESTS REVISITED: OLD AND NEW TESTS IN TERMS OF LOCAL LEVELS [J].
Finner, Helmut ;
Gontscharuk, Veronika .
ANNALS OF STATISTICS, 2018, 46 (06) :3045-3068