CRISPR RNA-Guided Transposases Facilitate Dispensable Gene Study in Phage

被引:0
|
作者
Liu, Yanmei [1 ]
Liang, Zizhen [1 ]
Yu, Shuting [1 ]
Ye, Yanrui [1 ]
Lin, Zhanglin [1 ,2 ]
机构
[1] South China Univ Technol, Sch Biol & Biol Engn, Guangzhou 510006, Peoples R China
[2] Chinese Acad Sci, Shenzhen Inst Synthet Biol, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
来源
VIRUSES-BASEL | 2024年 / 16卷 / 03期
基金
国家重点研发计划;
关键词
Pseudomonas aeruginosa phage; V. cholerae Tn6677 transposon; in vivo transposon insertion; GENOME; THERAPY;
D O I
10.3390/v16030422
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Phages provide a potential therapy for multi-drug-resistant (MDR) bacteria. However, a significant portion of viral genes often remains unknown, posing potential dangers. The identification of non-essential genes helps dissect and simplify phage genomes, but current methods have various limitations. In this study, we present an in vivo two-plasmid transposon insertion system to assess the importance of phage genes, which is based on the V. cholerae transposon Tn6677, encoding a nuclease-deficient type I-F CRISPR-Cas system. We first validated the system in Pseudomonas aeruginosa PAO1 and its phage S1. We then used the selection marker AcrVA1 to protect transposon-inserted phages from CRISPR-Cas12a and enriched the transposon-inserted phages. For a pool of selected 10 open-reading frames (2 known functional protein genes and 8 hypothetical protein genes) of phage S1, we identified 5 (2 known functional protein genes and 3 hypothetical protein genes) as indispensable genes and the remaining 5 (all hypothetical protein genes) as dispensable genes. This approach offers a convenient, site-specific method that does not depend on homologous arms and double-strand breaks (DSBs), holding promise for future applications across a broader range of phages and facilitating the identification of the importance of phage genes and the insertion of genetic cargos.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] CRISPR RNA-guided autonomous delivery of Cas9
    Wilkinson, Royce A.
    Martin, Coleman
    Nemudryi, Artem A.
    Wiedenheft, Blake
    NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2019, 26 (01) : 14 - 24
  • [32] Structural basis for CRISPR RNA-guided DNA recognition by Cascade
    Jore, Matthijs M.
    Lundgren, Magnus
    van Duijn, Esther
    Bultema, Jelle B.
    Westra, Edze R.
    Waghmare, Sakharam P.
    Wiedenheft, Blake
    Pul, Uemit
    Wurm, Reinhild
    Wagner, Rolf
    Beijer, Marieke R.
    Barendregt, Arjan
    Zhou, Kaihong
    Snijders, Ambrosius P. L.
    Dickman, Mark J.
    Doudna, Jennifer A.
    Boekema, Egbert J.
    Heck, Albert J. R.
    van der Oost, John
    Brouns, Stan J. J.
    NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2011, 18 (05) : 529 - U141
  • [33] Next stop for the CRISPR revolution: RNA-guided epigenetic regulators
    Vora, Suhani
    Tuttle, Marcelle
    Cheng, Jenny
    Church, George
    FEBS JOURNAL, 2016, 283 (17) : 3181 - 3193
  • [34] Programmable Biosensors Based on RNA-Guided CRISPR/Cas Endonuclease
    Liu, Xiaolong
    Hussain, Mubashir
    Dai, Jianguo
    Li, Yonghong
    Zhang, Lijun
    Yang, Jian
    Ali, Zeeshan
    He, Nongyue
    Tang, Yongjun
    BIOLOGICAL PROCEDURES ONLINE, 2022, 24 (01)
  • [35] The CRISPR road: from bench to bedside on an RNA-guided path
    Garcia-Bloj, Benjamin
    Moses, Colette
    Blancafort, Pilar
    ANNALS OF TRANSLATIONAL MEDICINE, 2015, 3 (13)
  • [36] Efficient Genome Editing by RNA-guided CRISPR Nucleases in Soybean
    Ye, Xudong
    Xu, Jianping
    Rymarquis, Linda
    Chen, Yurong
    Wang, Dafu
    Kouranov, Andrei
    Saltarikos, Annie
    Gaeta, Bob
    Salvador, Sara
    Gilbertson, Larry
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2018, 54 : S18 - S18
  • [37] Genotyping with CRISPR-Cas-derived RNA-guided endonucleases
    Kim, Jong Min
    Kim, Daesik
    Kim, Seokjoong
    Kim, Jin-Soo
    NATURE COMMUNICATIONS, 2014, 5
  • [38] Structures of the holo CRISPR RNA-guided transposon integration complex
    Jung-Un Park
    Amy Wei-Lun Tsai
    Alexandrea N. Rizo
    Vinh H. Truong
    Tristan X. Wellner
    Richard D. Schargel
    Elizabeth H. Kellogg
    Nature, 2023, 613 : 775 - 782
  • [39] DNA interrogation by the CRISPR RNA-guided endonuclease Cas9
    Sternberg, Samuel H.
    Redding, Sy
    Jinek, Martin
    Greene, Eric C.
    Doudna, Jennifer A.
    NATURE, 2014, 507 (7490) : 62 - +
  • [40] In vitro IgE gene targeting using the CRISPR-Cas9 RNA-guided nuclease system
    Stephens, A. C.
    Turcanu, V.
    CLINICAL AND EXPERIMENTAL ALLERGY, 2015, 45 (12): : 1897 - 1897