CO2 Reduction beyond Copper-Based Catalysts: A Natural Language Processing Review from the Scientific Literature

被引:3
|
作者
Bandeira, Lucas [1 ]
Ferreira, Henrique [1 ,2 ]
Almeida, James Moraes de [3 ]
Jardim de Paula, Amauri [3 ]
Dalpian, Gustavo Martini [1 ,4 ]
机构
[1] Fed Univ ABC, BR-09280560 Santo Andre, Brazil
[2] Paulista Fac Informat & Adm, BR-01538001 Sao Paulo, Brazil
[3] Ilum Sch Sci CNPEM, BR-13087548 Campinas, Brazil
[4] Univ Sao Paulo, Inst Phys, BR-05508090 Sao Paulo, Brazil
来源
ACS SUSTAINABLE CHEMISTRY & ENGINEERING | 2024年 / 12卷 / 11期
基金
巴西圣保罗研究基金会;
关键词
CO2 reduction reaction; natural language processing; data analysis; photocatalysis; electrocatalysis; ELECTROCHEMICAL REDUCTION; CARBON-DIOXIDE; ELECTROREDUCTION; SELECTIVITY; METHANOL; NABH4;
D O I
10.1021/acssuschemeng.3c06920
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Carbon dioxide (CO2) is a prominent greenhouse gas that contributes significantly to global warming. To combat this issue, one strategy is the conversion of CO2 into alcohols and hydrocarbons, which can be used as fuels and chemical feedstocks. Consequently, a substantial volume of scientific literature has been dedicated to investigating different materials and reaction conditions to facilitate the CO2 reduction reaction (CO2RR) into these so-called high-value products. However, the vastness of this literature makes it challenging to stay updated on recent discoveries and review the most promising materials and conditions that have been explored. To address this issue, we applied natural language processing tools to extract valuable data from 7292 published articles in the scientific literature. Our analysis revealed the emergence of new materials such as cesium-lead-bromide perovskites and bismuth oxyhalides that have been recently used in the CO2RR and identified Bi-based catalysts as the most selective for HCOO- production. Furthermore, we gleaned insights into the composition of other elements and materials commonly employed in the CO2RR, their relationship to product distribution, and the prevalent electrolytes used in the CO2 electrochemical reduction. Our findings can serve as a foundation for future investigations in the realm of catalysts for CO(2)RRs, offering insights into the most promising materials and conditions to pursue further research.
引用
收藏
页码:4411 / 4422
页数:12
相关论文
共 50 条
  • [31] Copper-based metal-organic frameworks for electrochemical reduction of CO2
    Kang, Xiaomin
    Fu, Guodong
    Fu, Xian-Zhu
    Luo, Jing-Li
    CHINESE CHEMICAL LETTERS, 2023, 34 (06)
  • [32] How to enhance the C2 products selectivity of copper-based catalysts towards electrochemical CO2 reduction?-A review
    Li, Meng
    Hu, Yue
    Wu, Tianci
    Sumboja, Afriyanti
    Geng, Dongsheng
    MATERIALS TODAY, 2023, 67 : 320 - 343
  • [33] Challenges and strategies towards copper-based catalysts for enhanced electrochemical CO2 reduction to multi-carbon products
    Sun, Bo
    Dai, Mingwei
    Cai, Songchi
    Cheng, Haoyan
    Song, Kexing
    Yu, Ying
    Hu, Hao
    FUEL, 2023, 332
  • [34] Electrochemical Reduction of CO2 to HCOOH over Copper Catalysts
    Hu, Weibo
    Li, Jiejie
    Ma, Lushan
    Su, Wanyu
    Zhu, Yanping
    Li, Wenhao
    Chen, Yubin
    Zou, Liangliang
    Zou, Zhiqing
    Yang, Bo
    Wen, Ke
    Yang, Hui
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (48) : 57462 - 57469
  • [35] Electrochemical CO2 Reduction to Multicarbon Products on Non-Copper Based Catalysts
    Huang, Jiayi
    Liu, Qianwen
    Huang, Jianmei
    Xu, Ming
    Lai, Wenchuan
    Gu, Zhiyuan
    CHEMSUSCHEM, 2025, 18 (01)
  • [36] Ultrasound-assisted synthesis of copper-based catalysts for the electrocatalytic CO2 reduction: Effect of ultrasound irradiation, precursor concentration and calcination temperature
    Guzman, Hilmar
    Roldan, Daniela
    Russo, Nunzio
    Hernandez, Simelys
    SUSTAINABLE MATERIALS AND TECHNOLOGIES, 2023, 35
  • [37] Copper(ii) tetrakis(pentafluorophenyl)porphyrin: highly active copper-based molecular catalysts for electrochemical CO2 reduction
    Kosugi, Kento
    Kashima, Hina
    Kondo, Mio
    Masaoka, Shigeyuki
    CHEMICAL COMMUNICATIONS, 2022, 58 (18) : 2975 - 2978
  • [38] Recent Progress on Copper-Based Bimetallic Heterojunction Catalysts for CO2 Electrocatalysis: Unlocking the Mystery of Product Selectivity
    Huang, Jiabao
    Zhang, Xinping
    Yang, Jiao
    Yu, Jianmin
    Chen, Qingjun
    Peng, Lishan
    ADVANCED SCIENCE, 2024, 11 (24)
  • [39] Electrochemical Production of Formic Acid from CO2 with Cetyltrimethylammonium Bromide-Assisted Copper-Based Catalysts
    Qiu, Yanling
    Xu, Wenbin
    Yao, Pengfei
    Zheng, Qiong
    Zhang, Huamin
    Li, Xianfeng
    CHEMSUSCHEM, 2021, 14 (08) : 1962 - 1969
  • [40] Recent progress in electrochemical reduction of CO2 by oxide-derived copper catalysts
    Wang, S.
    Kou, T.
    Baker, S. E.
    Duoss, E. B.
    Li, Y.
    MATERIALS TODAY NANO, 2020, 12