共 50 条
CO2 Reduction beyond Copper-Based Catalysts: A Natural Language Processing Review from the Scientific Literature
被引:3
|作者:
Bandeira, Lucas
[1
]
Ferreira, Henrique
[1
,2
]
Almeida, James Moraes de
[3
]
Jardim de Paula, Amauri
[3
]
Dalpian, Gustavo Martini
[1
,4
]
机构:
[1] Fed Univ ABC, BR-09280560 Santo Andre, Brazil
[2] Paulista Fac Informat & Adm, BR-01538001 Sao Paulo, Brazil
[3] Ilum Sch Sci CNPEM, BR-13087548 Campinas, Brazil
[4] Univ Sao Paulo, Inst Phys, BR-05508090 Sao Paulo, Brazil
来源:
ACS SUSTAINABLE CHEMISTRY & ENGINEERING
|
2024年
/
12卷
/
11期
基金:
巴西圣保罗研究基金会;
关键词:
CO2 reduction reaction;
natural language processing;
data analysis;
photocatalysis;
electrocatalysis;
ELECTROCHEMICAL REDUCTION;
CARBON-DIOXIDE;
ELECTROREDUCTION;
SELECTIVITY;
METHANOL;
NABH4;
D O I:
10.1021/acssuschemeng.3c06920
中图分类号:
O6 [化学];
学科分类号:
0703 ;
摘要:
Carbon dioxide (CO2) is a prominent greenhouse gas that contributes significantly to global warming. To combat this issue, one strategy is the conversion of CO2 into alcohols and hydrocarbons, which can be used as fuels and chemical feedstocks. Consequently, a substantial volume of scientific literature has been dedicated to investigating different materials and reaction conditions to facilitate the CO2 reduction reaction (CO2RR) into these so-called high-value products. However, the vastness of this literature makes it challenging to stay updated on recent discoveries and review the most promising materials and conditions that have been explored. To address this issue, we applied natural language processing tools to extract valuable data from 7292 published articles in the scientific literature. Our analysis revealed the emergence of new materials such as cesium-lead-bromide perovskites and bismuth oxyhalides that have been recently used in the CO2RR and identified Bi-based catalysts as the most selective for HCOO- production. Furthermore, we gleaned insights into the composition of other elements and materials commonly employed in the CO2RR, their relationship to product distribution, and the prevalent electrolytes used in the CO2 electrochemical reduction. Our findings can serve as a foundation for future investigations in the realm of catalysts for CO(2)RRs, offering insights into the most promising materials and conditions to pursue further research.
引用
收藏
页码:4411 / 4422
页数:12
相关论文