OIL SPILL DETECTION IN CALM OCEAN CONDITIONS: A U-NET MODEL NOVEL SOLUTION

被引:2
作者
Hammoud, Bilal [1 ]
Maroun, Charbel Bou [2 ]
Moursi, Mohamed [1 ]
Wehn, Norbert [1 ]
机构
[1] EIT Rheinland Pfalz Tech Univ RPTU, Microelect Syst Design Res Grp EMS, Kaiserslautern, Germany
[2] Lebanese Amer Univ LAU, SoE, Dept Elect & Comp Engn, Byblos, Lebanon
来源
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2023年
关键词
Oil spill; drone; U-net model; radar backscattering; detection; SEGMENTATION;
D O I
10.1109/IGARSS52108.2023.10281482
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Oil spills severely damage marine life and coastal environments. To reduce their polluting effect on the ecosystem, it is important to promptly react to potential spills for early detection and monitoring. In this paper, we propose a drone-based solution with a deep-learning U-net model. It processes the radar backscattering dominated by the specular component in calm ocean conditions to detect contaminated sea surfaces with oil spills. Results show that our approach achieves a high detection rate exceeding 90% for thick oil slicks in the range of 1-10 mm.
引用
收藏
页码:4658 / 4661
页数:4
相关论文
共 19 条
[1]   SAR Oil Spill Detection System through Random Forest Classifiers [J].
Conceicao, Marcos Reinan Assis ;
de Mendonca, Luis Felipe Ferreira ;
Lentini, Carlos Alessandre Domingos ;
da Cunha Lima, Andre Telles ;
Lopes, Jose Marques ;
de Vasconcelos, Rodrigo Nogueira ;
Gouveia, Mainara Biazati ;
Porsani, Milton Jose .
REMOTE SENSING, 2021, 13 (11)
[2]   Oil Spill Detection Using Machine Learning and Infrared Images [J].
De Kerf, Thomas ;
Gladines, Jona ;
Sels, Seppe ;
Vanlanduit, Steve .
REMOTE SENSING, 2020, 12 (24) :1-13
[3]   Semantic Segmentation of SLAR Imagery with Convolutional LSTM Selectional AutoEncoders [J].
Gallego, Antonio-Javier ;
Gil, Pablo ;
Pertusa, Antonio ;
Fisher, Robert B. .
REMOTE SENSING, 2019, 11 (12)
[4]   Classification of oil spill by thicknesses using multiple remote sensors [J].
Garcia-Pineda, Oscar ;
Staples, Gordon ;
Jones, Cathleen E. ;
Hu, Chuanmin ;
Holt, Benjamin ;
Kourafalou, Villy ;
Graettinger, George ;
DiPinto, Lisa ;
Ramirez, Ellen ;
Streett, Davida ;
Cho, Jay ;
Swayze, Gregg A. ;
Sun, Shaojie ;
Garcia, Diana ;
Haces-Garcia, Francisco .
REMOTE SENSING OF ENVIRONMENT, 2020, 236
[5]   A MAXIMUM A-POSTERIORI PROBABILISTIC APPROACH USING UAV-NADIR-LOOKING WIDE-BAND RADAR FOR REMOTE SENSING OIL-SPILL DETECTION [J].
Hammoud, Bilal ;
Wehn, Norbert .
2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, :7823-7826
[6]  
Hammoud B, 2019, EUROP RADAR CONF, P205
[7]   Bayesian Statistics of Wide-Band Radar Reflections for Oil Spill Detection on Rough Ocean Surface [J].
Hammoud, Bilal ;
Ndagijimana, Fabien ;
Faour, Ghaleb ;
Ayad, Hussam ;
Jomaah, Jalal .
JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2019, 7 (01)
[8]   Oil spill detection from Synthetic Aperture Radar Earth observations: a meta-analysis and comprehensive review [J].
Jafarzadeh, Hamid ;
Mahdianpari, Masoud ;
Homayouni, Saeid ;
Mohammadimanesh, Fariba ;
Dabboor, Mohammed .
GISCIENCE & REMOTE SENSING, 2021, 58 (07) :1022-1051
[9]   Advances in remote sensing for oil spill disaster management: State-of-the-art sensors technology for oil spill surveillance [J].
Jha, Maya Nand ;
Levy, Jason ;
Gao, Yang .
SENSORS, 2008, 8 (01) :236-255
[10]   Hyperspectral Remote Sensing Detection of Marine Oil Spills Using an Adaptive Long-Term Moment Estimation Optimizer [J].
Jiang, Zongchen ;
Zhang, Jie ;
Ma, Yi ;
Mao, Xingpeng .
REMOTE SENSING, 2022, 14 (01)