OPIA: an open archive of plant images and related phenotypic traits

被引:5
作者
Cao, Yongrong [1 ,2 ,3 ,4 ]
Tian, Dongmei [1 ,2 ,3 ]
Tang, Zhixin [5 ]
Liu, Xiaonan [1 ,2 ,3 ,4 ]
Hu, Weijuan [5 ]
Zhang, Zhang [1 ,2 ,3 ,4 ]
Song, Shuhui [1 ,2 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Beijing Inst Genom, Natl Genom Data Ctr, Beijing, Peoples R China
[2] China Natl Ctr Bioinformat, Beijing, Peoples R China
[3] Chinese Acad Sci, Beijing Inst Genom, CAS Key Lab Genome Sci & Informat, Beijing 100101, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[5] Chinese Acad Sci, Inst Genet & Dev Biol, Beijing 100101, Peoples R China
基金
中国国家自然科学基金;
关键词
DATABASE;
D O I
10.1093/nar/gkad975
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
High-throughput plant phenotype acquisition technologies have been extensively utilized in plant phenomics studies, leading to vast quantities of images and image-based phenotypic traits (i-traits) that are critically essential for accelerating germplasm screening, plant diseases identification and biotic & abiotic stress classification. Here, we present the Open Plant Image Archive (OPIA, https://ngdc.cncb.ac.cn/opia/), an open archive of plant images and i-traits derived from high-throughput phenotyping platforms. Currently, OPIA houses 56 datasets across 11 plants, comprising a total of 566 225 images with 2 417 186 labeled instances. Notably, it incorporates 56 i-traits of 93 rice and 105 wheat cultivars based on 18 644 individual RGB images, and these i-traits are further annotated based on the Plant Phenotype and Trait Ontology (PPTO) and cross-linked with GWAS Atlas. Additionally, each dataset in OPIA is assigned an evaluation score that takes account of image data volume, image resolution, and the number of labeled instances. More importantly, OPIA is equipped with useful tools for online image pre-processing and intelligent prediction. Collectively, OPIA provides open access to valuable datasets, pre-trained models, and phenotypic traits across diverse plants and thus bears great potential to play a crucial role in facilitating artificial intelligence-assisted breeding research. [GRAPHICS] .
引用
收藏
页码:D1530 / D1537
页数:8
相关论文
共 35 条
[1]   Rice Plant Counting, Locating, and Sizing Method Based on High-Throughput UAV RGB Images [J].
Bai, Xiaodong ;
Liu, Pichao ;
Cao, Zhiguo ;
Lu, Hao ;
Xiong, Haipeng ;
Yang, Aiping ;
Cai, Zhe ;
Wang, Jianjun ;
Yao, Jianguo .
PLANT PHENOMICS, 2023, 5
[2]   MaizeDIG: Maize Database of Images and Genomes [J].
Cho, Kyoung Tak ;
Portwood, John L., II ;
Gardiner, Jack M. ;
Harper, Lisa C. ;
Lawrence-Dill, Carolyn J. ;
Friedberg, Iddo ;
Andorf, Carson M. .
FRONTIERS IN PLANT SCIENCE, 2019, 10
[3]   Identification of Rice Varieties Using Machine Learning Algorithms [J].
Cinar, Ilkay ;
Koklu, Murat .
JOURNAL OF AGRICULTURAL SCIENCES-TARIM BILIMLERI DERGISI, 2022, 28 (02) :307-325
[4]   GrainSpace: A Large-scale Dataset for Fine-grained and Domain-adaptive Recognition of Cereal Grains [J].
Fan, Lei ;
Ding, Yiwen ;
Fan, Dongdong ;
Di, Donglin ;
Pagnucco, Maurice ;
Song, Yang .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :21084-21093
[5]   A primer on artificial intelligence in plant digital phenomics: embarking on the data to insights journey [J].
Harfouche, Antoine L. ;
Nakhle, Farid ;
Harfouche, Antoine H. ;
Sardella, Orlando G. ;
Dart, Eli ;
Jacobson, Daniel .
TRENDS IN PLANT SCIENCE, 2023, 28 (02) :154-184
[6]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[7]   OBIA: An Open Biomedical Imaging Archive [J].
Jin, Enhui ;
Zhao, Dongli ;
Wu, Gangao ;
Zhu, Junwei ;
Wang, Zhonghuang ;
Wei, Zhiyao ;
Zhang, Sisi ;
Wang, Anke ;
Tang, Bixia ;
Chen, Xu ;
Sun, Yanling ;
Zhang, Zhe ;
Zhao, Wenming ;
Meng, Yuanguang .
GENOMICS PROTEOMICS & BIOINFORMATICS, 2023, 21 (05) :1059-1065
[8]   Towards a real-time sorting system: Identification of vitreous durum wheat kernels using ANN based on their morphological, colour, wavelet and gaborlet features [J].
Kaya, Esra ;
Saritas, Ismail .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2019, 166
[9]   A spatio temporal spectral framework for plant stress phenotyping [J].
Khanna, Raghav ;
Schmid, Lukas ;
Walter, Achim ;
Nieto, Juan ;
Siegwart, Roland ;
Liebisch, Frank .
PLANT METHODS, 2019, 15 (1)
[10]   High-Throughput Rice Density Estimation from Transplantation to Tillering Stages Using Deep Networks [J].
Liu, Liang ;
Lu, Hao ;
Li, Yanan ;
Cao, Zhiguo .
PLANT PHENOMICS, 2020, 2020